Skip to main content
Log in

Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study we have synthesized and characterized FeS2 nanoparticles with larger optical band gap (3.19 eV) and high thermal stability by hydrothermal route with capping reagent PEG 400. This high quality FeS2 nanoparticle with higher band gap energy was applied as semiconducting acceptor in MEHPPV:FeS2 nanoparticle based hybrid solar cells to improve the open circuit voltage. Variations in the property of FeS2 have been done and confirmed by XRD, FE-SEM, TEM, FTIR, TGA, UV–VIS spectroscopy and Raman study. Two types of solar cells have been fabricated with structures: ITO/PEDOT:PSS/MEHPPV/Al and ITO/PEDOT:PSS/MEHPPV:FeS2/Al. The open circuit voltage has been increased from 0.64 to 0.72 V by compositing FeS2 nanoparticle within MEHPPV matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.C. Greenham, X.G. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)

    Article  CAS  Google Scholar 

  2. A.C. Arango, S.A. Carter, P.J. Brock, Appl. Phys. Lett. 74, 1698–1700 (1999)

    Article  CAS  Google Scholar 

  3. K.R. Choudhury, Y. Sahoo, T.Y. Ohulchanskyy, P.N. Prasad, Appl. Phys. Lett. 87, 073110–073113 (2005)

    Article  Google Scholar 

  4. W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W.J. Barnham, Phys. Rev. B 67, 115326/01–115326/12 (2003)

    Article  Google Scholar 

  5. I. Bedja, A. Hagfeldt, Adv in Opto Electron 6, 824927/1–824927/6 (2011)

    Google Scholar 

  6. A. Kirkeminde, B. Ruzicka, R. Wang, S. Puna, H. Zhao, S. Ren, ACS Appl. Mater. Interfaces 4, 1174–1177 (2012)

    Article  CAS  Google Scholar 

  7. S. Disale, S. Garje, Adv. Sci. Lett. 3, 80–86 (2010)

    Article  CAS  Google Scholar 

  8. D. Rickard, G.W. Luther, Chem. Rev. 107, 514–562 (2007)

    Article  CAS  Google Scholar 

  9. C. Wadia, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072–2077 (2009)

    Article  CAS  Google Scholar 

  10. A. Ennaoui, S. Fiechter, C. Pettenkofer, N.A. Vante, K. Buker, M. Bronold, C. Hopfner, H. Tributsch, Sol. Energy Mater. Sol. Cells 29(4), 289–370 (1993)

    Article  CAS  Google Scholar 

  11. R. Sun, G. Ceder, Phys. Rev. B 84, 245211/1–245211/7 (2011)

    CAS  Google Scholar 

  12. A. Ennaoui, H. Tributsch, Sol Cells 13, 197–200 (1984)

    Article  CAS  Google Scholar 

  13. A. Ennaoui, S. Fiechter, W. Jaegermann, H.J. Tributsch, J. Electrochem. Soc. 133, 97–106 (1986)

    Article  CAS  Google Scholar 

  14. M. Birkholz, S. Fiechter, A. Hartmann, H. Tributsch, Phys. Rev. B 43, 11926–11936 (1991)

    Article  CAS  Google Scholar 

  15. J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, J. Am. Chem. Soc. 133, 716–719 (2011)

    Article  CAS  Google Scholar 

  16. P. Scherrer, Göttinger Nachrichten Gesell. 2, 98–100 (1918)

    Google Scholar 

  17. J.M. Philias, B. Marsan, Electrochem Act 44, 2351–2363 (1999)

    Article  CAS  Google Scholar 

  18. H. Vogt, T. Chattopadhyay, H.J. Stolz, J. Phys. Chem. Solids 44, 869–873 (1983)

    Article  CAS  Google Scholar 

  19. A.K. Kleppe, A.P. Jephcoat, Miner. Mag. 68, 433–441 (2004)

    Article  CAS  Google Scholar 

  20. J.P. Pemsler, R.K.F. Lam, J.K. Litchfield, S. Dallek, B.F. Larrick, B.C. Beard, J. Electrochem. Soc. 137, 1–8 (1990)

    Article  CAS  Google Scholar 

  21. P. Masset, J.Y. Poinso, J.C. Poignet, J. Therm. Anal. Calorim. 83(2), 457–462 (2006)

    Article  CAS  Google Scholar 

  22. J.S. Parramon, V. Janicki, H. Zorc, Thin Solid Films 516, 5478 (2008)

    Article  Google Scholar 

  23. P.P. Sahay, R.K. Nath, S. Tewari, Cryst. Res. Technol. 42, 275 (2007)

    Article  CAS  Google Scholar 

  24. R. Seoudi, A. Shabaka, W.H. Eisa, B. Anies, N.M. Farage, Phys. B 405, 919 (2010)

    Article  CAS  Google Scholar 

  25. I.J. Ferrer, D.M. Nevskala, C. de las Heras, C. de Sanchez, Solid State Commun. 74(9), 913–916 (1990)

    Article  CAS  Google Scholar 

  26. G. Smestad, A. da Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Mezziani, M. Birkholz, Sol Energy Mater. 18, 299–313 (1989)

    Article  CAS  Google Scholar 

  27. L. Chongyang, C. Pettenkofer, H. Tributsch, Surf. Sci. 204, 537–554 (1988)

    Article  Google Scholar 

  28. Y. Abdollahi, A.H. Abdullah, Z. Zainal, N.A. Yusof, Int J Basic App Sci 11(04), 62–69 (2011)

    Google Scholar 

  29. P. Chakraborty, G. Datta, K. Ghatak, Phys. Scr. 68, 368–377 (2003)

    Article  CAS  Google Scholar 

  30. N.Z. Yahya, M. Rusop, J Nanomater 2012, 1–4 (2012)

    Article  Google Scholar 

  31. Y.Z. Lee, X. Chen, S.A. Chen, P.K. Wei, W.S. Fann, J. Am. Chem. Soc. 123, 2296–2307 (2001)

    Article  CAS  Google Scholar 

  32. J. Yu, D. Hu, P.F. Barbara, Science 289, 1327–1330 (2000)

    Article  CAS  Google Scholar 

  33. G. Yu, A.J. Heeger, J. Appl. Phys. 78, 4510–4515 (1995)

    Article  CAS  Google Scholar 

  34. Y. Kang, D. Kim, Sol. Energy Mater. Sol. Cells 90, 166–174 (2006)

    Article  CAS  Google Scholar 

  35. V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, J. Appl. Phys. 94, 6849–6854 (2003)

    Article  CAS  Google Scholar 

  36. C.M. Ramsdale, J.A. Barker, A.C. Arias, J.D. Mackenzie, R.H. Friend, N.C. Greenham, J. Appl. Phys. 92, 4266–4270 (2002)

    Article  CAS  Google Scholar 

  37. W.J. Potscavage, J.S. Yoo, B. Kippelen, Appl. Phys. Lett. 93, 193308/1–193308/3 (2008)

    Article  CAS  Google Scholar 

  38. Y. Bi, Y. Yuan, C.L. Exstrom, S.A. Darveau, J. Huang, Nano Lett. 11, 4953–4957 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University Grants Commission, Govt. of India under project 39-508/2010(SR). The authors wish to acknowledge Debraj Saha of Department of Chemistry, Jadavpur University and Priyanka Das of Department of Chemistry, West Bengal State University, Barasat for their valuable suggestions and enormous technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layek, A., Middya, S. & Ray, P.P. Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell. J Mater Sci: Mater Electron 24, 3749–3755 (2013). https://doi.org/10.1007/s10854-013-1313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1313-0

Keywords

Navigation