Skip to main content
Log in

Ferroelectric and piezoelectric properties of (1 − x) (Bi0.5Na0.5)TiO3–xBaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT)–barium titanate (BaTiO3,BT) have been prepared by solid state reaction process. The (1−x)BNT–(x)BT (x = 0.01,0.03,0.05,0.07) ceramics were sintered at 1,150 °C for 4 h in air, show a pure perovskite structure. X-ray diffraction analysis indicates that a solid solution is formed in (1−x)BNT–(x)BT ceramics with presence of a morphotropic phase boundary (MPB) between rhombohedral and tetragonal at x = 0.07. Raman spectroscopy shows the splitting of (TO3) mode at x = 0.07 confirming the presence of MPB region. The temperature dependence dielectric study shows a diffuse phase transition with gradual decrease in phase transition temperature (Tm). The dielectric constant and diffusivity increases with increase in BT content and is maximum at the MPB region. With the increase in BT content the maximum breakdown field increases, accordingly the coercive field (Ec) and remnant polarization (Pr) increases. The piezoelectric constant of (1 − x)BNT–(x)BT ceramics increases with increase in BT content and maximum at x = 0.07, which is the MPB region. The BNT–BT system is expected to be a new and promising candidate for lead-free dielectric and piezoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Spearing, Acta Mater. 48, 179 (2000)

    Article  CAS  Google Scholar 

  2. T. Nakaiso, K. Kageyama, A. Ando, Y. Sakabe, Jpn. J. Appl. Phys. 44, 6878 (2005)

    Article  CAS  Google Scholar 

  3. Y. Sakai, T. Futakuchi, T. Iijima, M. Adachi, Jpn. J. Appl. Phys. 44, 3099 (2005)

    Article  CAS  Google Scholar 

  4. P.J. Muralt, Micromech. Microeng. 10, 136 (2000)

    Article  CAS  Google Scholar 

  5. N. Lederman, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sens. Actuators, A 105, 162 (2003)

    Article  Google Scholar 

  6. R.W. Whatmore, Q. Zhang, Z. Huang, R.A. Dorey, Mater. Sci. Semicond. Process. 5, 65 (2003)

    Article  Google Scholar 

  7. P.W. Kruse, Uncooled thermal imaging, arrays, systems, and application, SPIE (2001)

  8. R. Watton, Ferroelectrics 184, 141 (1996)

    Article  CAS  Google Scholar 

  9. D. Akai, K. Hirabayashi, M. Yokawa, K. Swada, K. Taniguchi, Y. Murashige, S. Nakayama, N. Yamada, T. Murakami, M. Ishida, Sens. Actuators, A 130–131, 111 (2006)

    Google Scholar 

  10. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  11. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  CAS  Google Scholar 

  12. Y.M. Chiang, G.W. Farrey, A.N. Soukhojak, Appl. Phys. Lett. 73, 3683 (1998)

    CAS  Google Scholar 

  13. X.X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395 (2003)

    Article  CAS  Google Scholar 

  14. J. Suchanicz, J. Kwapulinski, Ferroelectrics 165, 249 (1995)

    Article  CAS  Google Scholar 

  15. V.A. Isupov, T.V. Kruzina, Izv. AN SSSR Ser. Fiz. 47, 616 (1983)

    CAS  Google Scholar 

  16. G.O. Jones, P.A. Thomas, Acta Crystallogr. B 58, 168 (2002)

    Article  CAS  Google Scholar 

  17. G.O. Jones, P.A. Thomas, Acta Crystallogr. B 56, 426 (2000)

    Google Scholar 

  18. C.S. Tu, I.G. Siny, V.H. Schmidt, Phys. Rev. B 49, 11550 (1994)

    Article  CAS  Google Scholar 

  19. S.E. Park, S.J. Chung, J. Am. Ceram. Soc. 79, 1290 (1996)

    Article  CAS  Google Scholar 

  20. K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974)

    Article  CAS  Google Scholar 

  21. I.P. Pronin, N.N. Parfenova, N.V. Zaitseva, V.A. Isupov, G.A. Smolensky, Sov. Phys. Solid State 24, 1060 (1982)

    Google Scholar 

  22. J. Petzelt, S. Kamba, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, G.E. Kugel, J. Phys.: Condens. Matter 16, 2719 (2004)

    Article  CAS  Google Scholar 

  23. J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, G. Lucazeau, J. Phys.: Condens. Matter 12, 3267 (2000)

    Article  CAS  Google Scholar 

  24. V.A. Isupov, I.P. Pronin, T.V. Krunina, Ferroelectrics Lett. 2, 205 (1984)

    Article  CAS  Google Scholar 

  25. J. Suchanicz, K. Roleder, A. Kania, J. Handerek, Ferroelectrics 77, 107 (1988)

    Article  CAS  Google Scholar 

  26. K. Roledar, J. Chuchanez, A. Kania, Ferroelectrics 89, 1 (1989)

    Article  Google Scholar 

  27. M.S. Hagiyev, I.H. Ismailzade, A.K. Abiyev, Ferroelectrics 56, 215 (1984)

    Article  Google Scholar 

  28. S.E. Park, S.J. Chung, I.T. Kim, K.S. Hong, J. Am. Ceram. Soc. 77, 2641 (1994)

    Article  CAS  Google Scholar 

  29. I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitaseva, A.F. Jaffe, Ferroelectrics 25, 395 (1980)

    Article  CAS  Google Scholar 

  30. S.E. Park, K.S. Hong, J. Appl. Phys. 79, 383 (1996)

    Article  CAS  Google Scholar 

  31. T.V. Kruznia, V.V. Gene, V.A. Isupov, E.V. Sinyakov, Sov. Phys. Crystallogr. 26, 482 (1981)

    Google Scholar 

  32. T. Takenaka, K. Sakata, Ferroelectrics 95, 153 (1989)

    Article  CAS  Google Scholar 

  33. T. Takenaka, K. Sakata, K. Toda, Ferroelectrics 106, 375 (1990)

    Article  CAS  Google Scholar 

  34. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005)

    Article  CAS  Google Scholar 

  35. H. Nagata, N. Koizumi, T. Takenaka, Key Eng. Mater. 169–170, 37 (1999)

    Article  Google Scholar 

  36. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999)

    Article  CAS  Google Scholar 

  37. X.X. Wang, S.H. Choy, X.G. Tang, H.L. Chan, J. Appl. Phys. 97, 104101 (2005)

    Article  Google Scholar 

  38. J. Wang, Y. Liu, L. Ray Withers, A. Studer, Q. Li, L. Norén, Y. Guo, J. Appl. Phys. 110, 084114 (2011)

    Article  Google Scholar 

  39. M. Cernea, F. Fochi, G. Virgil, B.S. Vasile, R. Trusca, C. Galassi, J. Mater. Sci. 47(8), 3669–3673 (2012)

    Article  CAS  Google Scholar 

  40. W. Meng, R. Zuo, S. Su, X. Wang, L. Li, J. Mater. Sci.: Mater. Electron. 22, 12 (2011)

    Article  Google Scholar 

  41. D. Lin, K. Kwok, J. Mater. Sci.: Mater. Electron. 21(3), 291–297 (2010)

    Article  CAS  Google Scholar 

  42. L.A. Schmitt, J. Kling, M. Hinterstein, M. Hoelzel, W. Jo, H.-J. Kleebe, H. Fuess, J. Mater. Sci. 46(12), 4368–4376 (2011)

    Article  CAS  Google Scholar 

  43. O. Saburi, J. Phys. Soc. Jpn. 14, 1159–1174 (1959)

    Article  CAS  Google Scholar 

  44. G.G. Harman, Phys. Rev. 106, 1358–1359 (1957)

    Article  CAS  Google Scholar 

  45. W.J. Merz, Phys. Rev. 76, 1221–1225 (1949)

    Article  CAS  Google Scholar 

  46. F. Jona, G. Shirane, Ferroelectric Crystals (Elsevier, Amsterdam, 1963)

    Google Scholar 

  47. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  48. K. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  CAS  Google Scholar 

  49. B. Huybrechts, K. Ishizaki, M. Takata, J. Mater. Sci. 30, 2463–2474 (1995)

    Article  CAS  Google Scholar 

  50. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  51. V.A. Isupov, Ferro- electrics 315(1), 123–147 (2005)

    CAS  Google Scholar 

  52. S.E. Park, S.J. Chung, Proceedings of the 9th IEEE International Sym-posium, ISAF’94, pp. 265–268 (1994)

  53. Y.F. Liu, Y.N. Lv, M. Xu, S.Z. Shi, H.Q. Xu, X.D. Yang, J. Wuhan Univ. Technol. Mater. Sci. Ed 22(2), 315–319 (2007)

    Article  CAS  Google Scholar 

  54. D. Rout, K.S. Moon, S.J.L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102–084108 (2010)

    Article  Google Scholar 

  55. B.W.V. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Phys. Rev. B. 82, 104112–104118 (2010)

    Article  Google Scholar 

  56. J. Petzelt, S. Kamba, J. Fábry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, G.E. Kugel, J. Phys.: Condens. Matter 16, 2719–2731 (2004)

    Article  CAS  Google Scholar 

  57. M.D. Domenico Jr, S.H. Wemple, S.P.S. Porto, P.R. Buman, Phys. Rev. 174, 522–530 (1968)

    Article  Google Scholar 

  58. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085–8091 (2001)

    Article  CAS  Google Scholar 

  59. R.M. German, Liquid Phase Sintering (Plenum Press, New York, NY, 1985)

    Google Scholar 

  60. T. Takenaka, Ferroelectrics 230, 389 (1989)

    Google Scholar 

  61. K. Yoshii, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006)

    Article  CAS  Google Scholar 

  62. T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 175 (1997)

    Article  CAS  Google Scholar 

  63. H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett. 58, 1194–1198 (2005)

    Article  Google Scholar 

  64. H. Nagata, T. Takenaka, J. Eur. Ceram. Soc. 21, 1299 (2001)

    Article  CAS  Google Scholar 

  65. Z. Wei, Z. Heping, Y. Yongke et al., Key Eng. Mater. 105, 336–338 (2007)

    Google Scholar 

  66. D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett., 88 (2006)

  67. X.H. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys. 74, 3399–3405 (1993)

    Article  CAS  Google Scholar 

  68. M.S. Yoon, H.M. Jang, S. Kim, Jpn. J. Appl. Phys. 4, 1916–1921 (1995)

    Article  Google Scholar 

  69. C.S. Tu, I.G. Siny, V.H. Schimidt, Phys. Rev. B 49, 11550 (1994)

    Article  CAS  Google Scholar 

  70. P.R. Chowdury, S.B. Deshpande, Indian J. Pure Appl. Phys. 22, 708 (1984)

    Google Scholar 

  71. G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  CAS  Google Scholar 

  72. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  CAS  Google Scholar 

  73. U. Aman, C.W. Ahn, A. Hussain, K. Ill Won, Curr. Appl. Phys 10, 1367 (2010)

    Article  Google Scholar 

  74. N. Feng, L. Luo, X. Pan, Y. Zhang, C. Hongbing, J. Mater. Sci. 47(7), 3354 (2011)

    Google Scholar 

  75. S.T. Zhang, B. Yang, W. Cao, Acta Mater. 60(2), 469 (2012)

    Article  CAS  Google Scholar 

  76. Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. 40, 5722 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Parija.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parija, B., Badapanda, T., Panigrahi, S. et al. Ferroelectric and piezoelectric properties of (1 − x) (Bi0.5Na0.5)TiO3–xBaTiO3 ceramics. J Mater Sci: Mater Electron 24, 402–410 (2013). https://doi.org/10.1007/s10854-012-0764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0764-z

Keywords

Navigation