Skip to main content
Log in

Studies of dielectric and electrical properties of a new type of complex tungsten bronze electroceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A polycrystalline ceramic with a new type of complex tungsten-bronze type structure, having a general formula K2Ba2Nd2Ti4Nb4W2O30 has been prepared using a high temperature solid-state reaction route after optimizing the calcinations conditions on the basis of thermal analysis results. The material has been characterized by different experimental techniques. The formation of the compound has been confirmed using X-ray diffraction analysis. Dielectric properties (εr and tanδ) of the compound as a function of temperature at different frequencies have been carried out. Temperature dependence of dielectric constant indicates the presence of ferroelectric phase transition well above the room temperature. Complex impedance spectroscopic analysis has been carried out as a function of frequency at different temperatures to establish some correlation between the microstructure and electrical properties of the material. The nature of frequency dependence of ac conductivity obeys the Jonscher’s power law. The dc conductivity calculated from the ac conductivity spectrum shows the negative temperature coefficient of resistance behavior like a semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Uchino, Ferroelectric Devices (Marcel Dekker Inc., New York, 2000)

    Google Scholar 

  2. M.E. Lines, A.M. Glass, Principle and Applications of Ferroelectrics and Related Materials (Clarndon Press, Oxford, 1977)

    Google Scholar 

  3. G. Goodman, J. Am. Ceram. Soc. 36, 368 (1953)

    Article  CAS  Google Scholar 

  4. M.H. Francombe, B. Lewis, Acta Crystallogr. 11, 696 (1958)

    Article  CAS  Google Scholar 

  5. G.A. Smolenskii, A.I. Agranovskaya, Dokl. Akad. Nauk. SSSR. 97, 237 (1954)

    CAS  Google Scholar 

  6. A.M. Glass, Appl. Phys. Lett. 13, 147 (1968)

    Article  CAS  Google Scholar 

  7. S. Sakamoto, T. Yazaki, Appl. Phys. Lett. 22, 429 (1973)

    Article  CAS  Google Scholar 

  8. J.M. Haussonne, G. Desgardin, A. Herve, B. Boufrou, J. Eur. Ceram. Soc. 10, 437 (1992)

    Article  CAS  Google Scholar 

  9. H. El Alaoui-Belghiti, R. Von der Mühll, A. Simon, M. Elaatmani, J. Ravez, Mater. Lett. 55, 138 (2002)

    Article  CAS  Google Scholar 

  10. X.M. Chen, Z.Y. Xu, J. Li, J. Mater. Res. 15, 125 (2000)

    Article  CAS  Google Scholar 

  11. L.G. van Uitert, S. Singh, H.J. Leninstein, Appl. Phys. Lett. 11, 161 (1967)

    Article  Google Scholar 

  12. J.J. Rubin, L.G. Van Uitert, H.J. Levinstein, J. Cryst. Growth 1, 315 (1967)

    Article  CAS  Google Scholar 

  13. R.R. Neurgaonkar, J.R. Oliver, J.G. Nelson, Mater. Res. Bull. 26, 771 (1991)

    Article  CAS  Google Scholar 

  14. P.R. Das, L. Biswal, B. Banarji, R.N.P. Choudhary, Mat. Res. Bull. 44, 1214 (2009)

    Article  CAS  Google Scholar 

  15. L. Fang, L. Chen, H. Zhang, C.L. Diao, R.Z. Yuan, Mater. Lett. 58, 2654 (2004)

    Article  CAS  Google Scholar 

  16. X.M. Chen, Y.H. Sun, X.H. Zheng, J. Eur. Ceram. Soc. 23, 1571 (2003)

    Article  CAS  Google Scholar 

  17. X.M. Chen, Y. Yuan, Y.H. Sun, J. Appl. Phys. 97, 074108 (2005)

    Article  Google Scholar 

  18. V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Galinetto, G. Chiodelli, J. Phys. Chem. B 110, 17798 (2006)

    Article  CAS  Google Scholar 

  19. G. Burns, D.F.O. Kane, E.A. Giess, B.A. Scott, Solid State Commun. 6, 223 (1968)

    Article  CAS  Google Scholar 

  20. R.R. Neurgaonkar, J.R. Oliver, W.K. Cory, L.E. Cross, Mater. Res. Bull. 18, 735 (1983)

    Article  CAS  Google Scholar 

  21. R.N.P. Choudhary, S.R. Shannigrahi, A.K. Singh, Bull. Mater. Sci. 22, 975 (1999)

    Article  CAS  Google Scholar 

  22. R. Palai, R.N.P. Choudhary, H.S. Tewari, J. Phys. Chem. Solids 62, 695 (2001)

    Article  CAS  Google Scholar 

  23. P.P. Rao, S.K. Ghosh, P. Koshy, Mat. Sci.: Mat. Electron 12, 729 (2001)

    Article  CAS  Google Scholar 

  24. P.V. Bijumon, V. Kohli, O. Prakash, M.R. Varma, M.T. Sebastian, Mater. Sci. Eng. B 113, 13 (2004)

    Article  Google Scholar 

  25. M.C. Stennett, G.C. Miles, J. Sharman, I.M. Reaney, A.R. West, J. Eur. Ceram. Soc. 25, 2471 (2005)

    Article  CAS  Google Scholar 

  26. H. Bensaid, L. Bih, B. Manoun, M. Azrour, A. El Bouari, P. Lazor, J. Mol. Struct. 988, 136 (2011)

    Article  CAS  Google Scholar 

  27. G. Burns, F.H. Dacol, Phy. Rev. B 40, 4012 (1984)

    Article  Google Scholar 

  28. A.K. Singh, R.N.P. Choudhary, Mater. Lett. 57, 3722 (2003)

    Article  CAS  Google Scholar 

  29. J. Ravez, H. El Alaoui-Belghiti, M. Elaatmani, A. Simon, Mater. Lett. 47, 159 (2001)

    Article  CAS  Google Scholar 

  30. X. Yuhuan, Z. Li, W. Li, H. Wang, Phys. Rev. B 40, 11902 (1989)

    Article  Google Scholar 

  31. S.R. Shannigrahi, R.N.P. Coudhary, A. Kumar, H.N. Acharya, J. Phys. Chem. Solids 59, 737 (1998)

    Article  CAS  Google Scholar 

  32. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ionics 57, 235 (1992)

    Article  CAS  Google Scholar 

  33. E. Wu, POWD, an interactive powder diffraction data interpretation and indexing program, Ver. 2.1, School of Physical Sciences, Flinders University South Bedford Park, SA 5042 Australia

  34. Y.H. Sun, X.M. Chen, X.H. Zheng, J. Appl. Phys. 96, 7435 (2004)

    Article  CAS  Google Scholar 

  35. X.H. Zheng, X.M. Chen, Solid State Commun. 125, 449 (2003)

    Article  CAS  Google Scholar 

  36. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  37. J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  38. J.R. Macdonald (ed.) Impedance spectroscopy, emphasizing solid materials and systems (Wiley, Singapore, 1987) (Chapter-4)

  39. Y.J. Zhong, F. Azough, R. Freet, J. Eur. Ceram. Soc. 15, 255 (1995)

    Article  CAS  Google Scholar 

  40. D.K. Pradhan, B.K. Samantaray, R.N.P. Choudhary, A.K. Thakur, Mater. Sci. Eng. B 116, 7 (2005)

    Article  Google Scholar 

  41. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  42. M. Dong, J.M. Reau, J. Ravez, Solid State Ionics 91, 183 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. R. N. P. Choudhary, Prof. B. K. Samantaray and Prof. A. K. Thakur, Department of Physics, IIT Kharagpur, India for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dillip K. Pradhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D.K., Behera, B. & Das, P.R. Studies of dielectric and electrical properties of a new type of complex tungsten bronze electroceramics. J Mater Sci: Mater Electron 23, 779–785 (2012). https://doi.org/10.1007/s10854-011-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0492-9

Keywords

Navigation