Skip to main content
Log in

Carbon dots-based catalyst for various organic transformations

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon dots (CDs), owing to their zero-dimensional structure and outstanding physicochemical features, can be used as a support to metals, metal oxides, to form nanocomposites, thus emerging as promising nanocatalysts to drive various organic transformations. For this reason, we planned to review the usage and advantages of these carbon dots and their supported catalysts, in various organic reactions. Furthermore, the recent advancements in CDs to develop it as an amphiphilic catalyst to use an environmentally benign solvent (water) to solvate organic reactants in organic reactions have also been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43

Similar content being viewed by others

Abbreviations

[APMim][Cl]:

1-Aminopropyl-3-methyl-imidazolium chloride

BPEI:

Branched polyethyleneimine

c-CDs:

Carboxyl functionalized carbon dots

CDs:

Carbon dots

CDNS:

Cyclodextrin nanosponges

CNDs:

Carbon nanodots

13C NMR:

13C Nuclear magnetic resonance spectroscopy

CSC:

Coconut shell char

CA:

Citric acid

CQDs:

Carbon quantum dots

CRS:

Colloidal reaction system

DAB:

1,4-Diaminobutane

DDA:

Dodecylamine

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier-transform infrared spectroscopy

g-C3N4 :

Graphitic carbon nitride

GO:

Graphene oxide

GQDs:

Graphene quantum dots

HPU:

Hyperbranched polyurethane

IRMOF:

Isoreticular metal–organic framework

IL:

Ionic liquid

LDH:

Layered double hydroxide

LED:

Light-emitting diode

MeOH:

Methanol

MOF:

Metal–organic frameworks

n-CDs:

Amine-functionalized carbon dots

N-CDs:

Nitrogen-doped carbon dots

NPs:

Nanoparticles

NR:

No reaction

NWs:

Nanowires

PB:

Prussian blue

PL:

Photoluminescence

PVP:

Poly-(N-vinyl-2-pyrrolidone)

QY:

Quantum yield

r-CDs:

Reduced carbon dots

TBHP:

Tertiary butyl hydroperoxide

TGA:

Thermogravimetric analysis

TEOA:

Triethanolamine

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

TOF:

Turnover frequency

TON:

Turnover number

UV–Vis:

Ultraviolet–visible spectroscopy

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  1. Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11:19214–19224. https://doi.org/10.1039/c9nr05647e

    Article  CAS  Google Scholar 

  2. Yu H, Shang L, Bian T et al (2016) Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28:5080–5086. https://doi.org/10.1002/adma.201600398

    Article  CAS  Google Scholar 

  3. Liu W, Li C, Ren Y et al (2016) Carbon dots: surface engineering and applications. J Mater Chem B 4:5772–5788. https://doi.org/10.1039/c6tb00976j

    Article  CAS  Google Scholar 

  4. Filippini G, Prato M, Rosso C (2020) Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal 10:8090–8105. https://doi.org/10.1021/acscatal.0c01989

    Article  CAS  Google Scholar 

  5. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734. https://doi.org/10.1039/c6ta08660h

    Article  CAS  Google Scholar 

  6. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003

    Article  CAS  Google Scholar 

  7. Li X, Rui M, Song J et al (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947. https://doi.org/10.1002/adfm.201501250

    Article  CAS  Google Scholar 

  8. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  Google Scholar 

  9. Wang X, Cao L, Lu F et al (2009) Photoinduced electron transfers with carbon dots. Chem Commun 46(25):3774–3776. https://doi.org/10.1039/b906252a

    Article  CAS  Google Scholar 

  10. Xia J, Di J, Li H et al (2016) Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl Catal B Environ 181:260–269. https://doi.org/10.1016/j.apcatb.2015.07.035

    Article  CAS  Google Scholar 

  11. Di J, Xia J, Huang Y et al (2016) Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem Eng J 302:334–343. https://doi.org/10.1016/j.cej.2016.05.009

    Article  CAS  Google Scholar 

  12. Fang S, Xia Y, Lv K et al (2016) Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl Catal B Environ 185:225–232. https://doi.org/10.1016/j.apcatb.2015.12.025

    Article  CAS  Google Scholar 

  13. Hu S, Zhou Y, Xue C et al (2017) A solid reaction towards: in situ hybridization of carbon dots and conjugated polymers for enhanced light absorption and conversion. Chem Commun 53:9426–9429. https://doi.org/10.1039/c7cc05526a

    Article  CAS  Google Scholar 

  14. Cao L, Sahu S, Anilkumar P et al (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133:4754–4757. https://doi.org/10.1021/ja200804h

    Article  CAS  Google Scholar 

  15. Yu H, Zhao Y, Zhou C et al (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351. https://doi.org/10.1039/c3ta14108j

    Article  CAS  Google Scholar 

  16. Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974. https://doi.org/10.1126/science.aaa3145

    Article  CAS  Google Scholar 

  17. Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137:6018–6025. https://doi.org/10.1021/jacs.5b01650

    Article  CAS  Google Scholar 

  18. Guo CX, Dong Y, Bin YH, Li CM (2013) Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv Energ Mater 3:997–1003. https://doi.org/10.1002/aenm.201300171

    Article  CAS  Google Scholar 

  19. Chu KW, Lee SL, Chang CJ, Liu L (2019) Recent progress of carbon dot precursors and photocatalysis applications. Polymers 11(2):206. https://doi.org/10.3390/polym11040689

    Article  CAS  Google Scholar 

  20. Sharma A, Das J (2019) Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnology 17:1–24. https://doi.org/10.1186/s12951-019-0525-8

    Article  CAS  Google Scholar 

  21. Li H, Liu R, Kong W et al (2014) Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale 6:867–873. https://doi.org/10.1039/c3nr03996j

    Article  CAS  Google Scholar 

  22. Phang SJ, Tan LL (2019) Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal Sci Technol 9:5882–5905. https://doi.org/10.1039/c9cy01452g

    Article  CAS  Google Scholar 

  23. Zhang Z, Yi G, Li P et al (2020) A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale 12:13899–13906. https://doi.org/10.1039/d0nr03163a

    Article  CAS  Google Scholar 

  24. Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52(7):1311–1326

    Article  CAS  Google Scholar 

  25. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  Google Scholar 

  26. Hutton GA, Martindale BC, Reisner E (2017) Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev 46(20):6111–6123

    Article  CAS  Google Scholar 

  27. Jelinek R (2017) Carbon quantum dots. Carbon nanostructures. Springer International Publishing, Cham, pp 29–46. https://doi.org/10.1007/978-3-319-43911-2

  28. Gao J, Zhu M, Huang H, Liu Y, Kang Z (2017) Advances, challenges and promises of carbon dots. Inorg Chem Front 4(12):1963–1986

    Article  CAS  Google Scholar 

  29. Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z (2018) Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 30(1):1704740

    Article  CAS  Google Scholar 

  30. Arcudi F, Đorđević L, Prato M (2017) Rationally designed carbon nanodots towards pure white-light emission. Angew Chem Int Ed 56(15):4170–4173

    Article  CAS  Google Scholar 

  31. Lu S, Xiao G, Sui L, Feng T, Yong X, Zhu S, Yang B (2017) Piezochromic carbon dots with two-photon fluorescence. Angew Chem 129(22):6283–6287

    Article  Google Scholar 

  32. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11(11):4634–4652

    Article  CAS  Google Scholar 

  33. Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z (2019) The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim Acta 186(8):1–37

    Article  CAS  Google Scholar 

  34. Arcudi F, Đorđević L, Prato M (2016) Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew Chem 128(6):2147–2152

    Article  Google Scholar 

  35. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H (2014) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4(1):1–8

    Google Scholar 

  36. Dey D, Bhattacharya T, Majumdar B, Mandani S et al (2013) Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation. Dalton Trans 42:13821–13825. https://doi.org/10.1039/C3DT51234G

    Article  CAS  Google Scholar 

  37. Pagliaro M, Pandarus V, Beland F, Ciriminna R, Palmisano G, Cara PD (2011) A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catal Sci Technol 1(5):736–739

    Article  CAS  Google Scholar 

  38. Yabe Y, Sawama Y, Monguchi Y, Sajiki H (2014) New aspect of chemoselective hydrogenation utilizing heterogeneous palladium catalysts supported by nitrogen-and oxygen-containing macromolecules. Catal Sci Technol 4(2):260–271

    Article  CAS  Google Scholar 

  39. Mora M, Jimenez-Sanchidrian C, Rafael Ruiz J (2012) Recent advances in the heterogeneous palladium-catalysed Suzuki cross-coupling reaction. Curr Org Chem 16(9):1128–1150

    Article  CAS  Google Scholar 

  40. Yin L, Liebscher J (2007) Carbon− carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107(1):133–173

    Article  CAS  Google Scholar 

  41. Pagliaro M, Pandarus V, Ciriminna R, Béland F, Demma Carà P (2012) Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem 4(4):432–445

    Article  CAS  Google Scholar 

  42. Karimi B, Behzadnia H, Vali H (2014) Palladium on ionic liquid derived nanofibrillated mesoporous carbon: a recyclable catalyst for the ullmann homocoupling reactions of aryl halides in water. ChemCatChem 6(3):745–748

    Article  CAS  Google Scholar 

  43. Polshettiwar V, Molnár Á (2007) Silica-supported Pd catalysts for Heck coupling reactions. Tetrahedron 30(63):6949–6976

    Article  CAS  Google Scholar 

  44. Nehra P, Khungar B, Pericherla K, Sivasubramanian SC, Kumar A (2014) Imidazolium ionic liquid-tagged palladium complex: an efficient catalyst for the Heck and Suzuki reactions in aqueous media. Green Chem 16(9):4266–4271

    Article  CAS  Google Scholar 

  45. Gong Y, Li M, Li H, Wang Y (2015) Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem 17(2):715–736

    Article  CAS  Google Scholar 

  46. Ghaderi A, Gholinejad M, Firouzabadi H (2016) Palladium deposited on naturally occurring supports as a powerful catalyst for carbon-carbon bond formation reactions. Curr Org Chem 20(4):327–348

    Article  CAS  Google Scholar 

  47. Karimi B, Mansouri F, Mirzaei HM (2015) Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem 7(12):1736–1789

    Article  CAS  Google Scholar 

  48. Veisi H, Gholami J, Ueda H, Mohammadi P, Noroozi M (2015) Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe3O4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. J Mol Catal A Chem 396:216–223

    Article  CAS  Google Scholar 

  49. Gholinejad M, Seyedhamzeh M, Razeghi M et al (2016) Iron oxide nanoparticles modified with carbon quantum nanodots for the stabilization of palladium nanoparticles: an efficient catalyst for the Suzuki reaction in aqueous media under mild conditions. ChemCatChem 8:441–447. https://doi.org/10.1002/cctc.201500925

    Article  CAS  Google Scholar 

  50. Gholinejad M, Najera C, Hamed F et al (2017) Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: efficient catalyst for Suzuki reaction. Tetrahedron 73:5585–5592. https://doi.org/10.1016/j.tet.2016.11.014

    Article  CAS  Google Scholar 

  51. Gholinejad M, Bahrami M, Nájera C (2017) A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: application as a recoverable catalyst for Suzuki reaction in water. Mol Catal 433:12–19. https://doi.org/10.1016/j.mcat.2016.12.010

    Article  CAS  Google Scholar 

  52. Gholinejad M, Zareh F, Nájera C (2018) Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Appl Organomet Chem 32:1–14. https://doi.org/10.1002/aoc.3984

    Article  CAS  Google Scholar 

  53. Bayan R, Karak N (2017) Photo-assisted synthesis of a Pd-Ag@CQD nanohybrid and its catalytic efficiency in promoting the Suzuki-Miyaura cross-coupling reaction under ligand-free and ambient conditions. ACS Omega 2:8868–8876. https://doi.org/10.1021/acsomega.7b01504

    Article  CAS  Google Scholar 

  54. Duarah R, Karak N (2019) Hyperbranched polyurethane/palladium-reduced carbon dot nanocomposite: an efficient and reusable mesoporous catalyst for visible-light-driven C–C coupling reactions. Ind Eng Chem Res 58:16307–16319. https://doi.org/10.1021/acs.iecr.9b01805

    Article  CAS  Google Scholar 

  55. Bigi F, Chesini L, Maggi R, Sartori G (1999) Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the Knoevenagel synthesis of coumarin-3-carboxylic acids. J Org Chem 64(3):1033–1035. https://doi.org/10.1021/jo981794r

    Article  CAS  Google Scholar 

  56. Yu N, Aramini JM, Germann MW, Huang Z (2000) Reactions of salicylaldehydes with alkyl cyanoacetates on the surface of solid catalysts: syntheses of 4H-chromene derivatives. Tetrahedron Lett 41(36):6993–6996. https://doi.org/10.1016/S0040-4039(00)01195-3

    Article  CAS  Google Scholar 

  57. Liang F, Pu Y-J, Kurata T, Kido J, Nishide H (2005) Synthesis and electroluminescent property of poly (p-phenylenevinylene) s bearing triarylamine pendants. Polymer 46(11):3767–3775. https://doi.org/10.1016/j.polymer.2005.03.036

    Article  CAS  Google Scholar 

  58. Texier-Boullet F, Foucaud A (1982) Knoevenagel condensation catalysed by aluminium oxide. Tetrahedron Lett 23(47):4927–4928. https://doi.org/10.1016/S0040-4039(00)85749-4

    Article  CAS  Google Scholar 

  59. Rao PS, Venkataratnam R (1991) Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron lett 32(41):5821–5822. https://doi.org/10.1016/S0040-4039(00)93564-0

    Article  CAS  Google Scholar 

  60. Bartoli G, Bosco M, Carlone A, Dalpozzo R, Galzerano P, Melchiorre P, Sambri L (2008) Magnesium perchlorate as efficient lewis acid for the knoevenagel condensation between β-diketones and aldehydes. Tetrahedron Lett 49(16):2555–2557. https://doi.org/10.1016/j.tetlet.2008.02.093

    Article  CAS  Google Scholar 

  61. Climent MJ, Corma A, Domínguez I, Iborra S, Sabater MJ, Sastre G (2007) Gem-diamines as highly active organocatalysts for carbon–carbon bond formation. J Catal 246(1):136–146. https://doi.org/10.1016/j.jcat.2006.11.029

    Article  CAS  Google Scholar 

  62. Saravanamurugan S, Palanichamy M, Hartmann M, Murugesan V (2006) Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Appl Catal A 298:8–15. https://doi.org/10.1016/j.apcata.2005.09.014

    Article  CAS  Google Scholar 

  63. Kubota Y, Nishizaki Y, Ikeya H, Saeki M, Hida T, Kawazu S, Yoshida M, Fujii H, Sugi Y (2004) Organic–silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Microporous Mesoporous Mater 70(1–3):135–149. https://doi.org/10.1016/j.micromeso.2004.02.017

    Article  CAS  Google Scholar 

  64. Mukhopadhyay C, Ray S (2011) A new silica based substituted piperidine derivative catalyzedexpeditious room temperature synthesis of homo and hetero bis-Knoevenagel condensation products. Catal Commun 12(15):1496–1502. https://doi.org/10.1016/j.catcom.2011.05.033

    Article  CAS  Google Scholar 

  65. Varadwaj GBB, Rana S, Parida K (2013) Amine functionalized K10 montmorillonite: a solid acid–base catalyst for the Knoevenagel condensation reaction. Dalton Trans 42(14):5122–5129. https://doi.org/10.1039/c3dt32495h

    Article  CAS  Google Scholar 

  66. Panchenko VN, Matrosova MM, Jeon J, Jun JW, Timofeeva MN, Jhung SH (2014) Catalytic behavior of metal–organic frameworks in the Knoevenagel condensation reaction. J Catal 316:251–259. https://doi.org/10.1016/j.jcat.2014.05.018

    Article  CAS  Google Scholar 

  67. Yang Y, Yao H-F, Xi F-G, Gao E-Q (2014) Amino-functionalized Zr (IV) metal–organic framework as bifunctional acid–base catalyst for Knoevenagel condensation. J Mol Catal A 390:198–205. https://doi.org/10.1016/j.molcata.2014.04.002

    Article  CAS  Google Scholar 

  68. Tran UP, Le KK, Phan NT (2011) Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. Acs Catal 1(2):120–127. https://doi.org/10.1021/cs1000625

    Article  CAS  Google Scholar 

  69. Nguyen LT, Le KK, Truong HX, Phan NT (2012) Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal Sci Technol 2(3):521–528. https://doi.org/10.1039/c1cy00386k

    Article  CAS  Google Scholar 

  70. Xamena FL, Cirujano F, Corma A (2012) An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous Mesoporous Mater 157:112–117. https://doi.org/10.1016/j.micromeso.2011.12.058

    Article  CAS  Google Scholar 

  71. Farzaneh F, Maleki MK, Rashtizadeh E (2017) Expedient catalytic access to Knöevenagel condensation using Sr 3 Al 2 O 6 nanocomposite in room temperature. J Clust Sci 28(6):3253–3263. https://doi.org/10.1007/s10876-017-1288-8

    Article  CAS  Google Scholar 

  72. Pei X, Xiong D, Wang H et al (2018) Reversible phase transfer of carbon dots between an organic phase and aqueous solution triggered by CO2. Angew Chemie 130:3749–3753. https://doi.org/10.1002/ange.201800037

    Article  Google Scholar 

  73. Farzaneh F, Aghabali S, Azarkamanzad Z (2020) Polyamine-functionalized carbon dots as active catalyst for Knoevenagel condensation reactions. React Kinet Mech Catal 130:1009–1025. https://doi.org/10.1007/s11144-020-01826-4

    Article  CAS  Google Scholar 

  74. Bakherad M, Bahramian B, Jajarmi S (2014) A novel 1, 2, 4-triazine-functionalized polystyrene resin-supported Pd (II) complex: a copper-and solvent-free highly efficient catalyst for Sonogashira coupling reactions. J Organomet Chem 749:405–409

    Article  CAS  Google Scholar 

  75. Roy S, Plenio H (2010) Sulfonated N-heterocyclic carbenes for Pd-catalyzed Sonogashira and Suzuki-Miyaura coupling in aqueous solvents. Adv Synth Catal 352(6):1014–1022

    Article  CAS  Google Scholar 

  76. Hajipour AR, Shirdashtzade Z, Azizi G (2014) Copper-and phosphine-free Sonogashira coupling reaction catalyzed by silica–(acac)-supported palladium nanoparticles in water. Appl Organomet Chem 28(9):696–698

    Article  CAS  Google Scholar 

  77. Thorwirth R, Stolle A, Ondruschka B (2010) Fast copper-, ligand-and solvent-free Sonogashira coupling in a ball mill. Green Chem 12(6):985–991

    Article  CAS  Google Scholar 

  78. Shunmughanathan M, Puthiaraj P, Pitchumani K (2015) Melamine-based microporous network polymer supported palladium nanoparticles: a stable and efficient catalyst for the sonogashira coupling reaction in water. ChemCatChem 7(4):666–673

    Article  CAS  Google Scholar 

  79. Le X, Dong Z, Liu Y, Jin Z, Huy TD, Le M, Ma J (2014) Palladium nanoparticles immobilized on core–shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. J Mater Chem A 2(46):19696–19706

    Article  CAS  Google Scholar 

  80. Mohammadi L, Heravi MM, Sadjadi S, Malmir M (2019) Hybrid of graphitic carbon nitride and palladated magnetic carbon dot: an efficient catalyst for coupling reaction. ChemistrySelect 4:13404–13411. https://doi.org/10.1002/slct.201903078

    Article  CAS  Google Scholar 

  81. Sarma D, Majumdar B, Sarma TK (2019) Visible-light induced enhancement in the multi-catalytic activity of sulfated carbon dots for aerobic carbon-carbon bond formation. Green Chem 21:6717–6726. https://doi.org/10.1039/c9gc02658d

    Article  CAS  Google Scholar 

  82. Bayan R, Karak N (2018) Hyperbranched polyurethane-supported Pd-Ag@CQD nanocomposite: a high performing heterogeneous catalyst. ChemistrySelect 3:11210–11218. https://doi.org/10.1002/slct.201802403

    Article  CAS  Google Scholar 

  83. Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104(6):3037–3058

    Article  CAS  Google Scholar 

  84. Paraskevopoulou P, Psaroudakis N, Koinis S, Stavropoulos P, Mertis K (2005) Catalytic selective oxidation of benzyl alcohols to aldehydes with rhenium complexes. J Mol Catal A Chem 240(1–2):27–32

    CAS  Google Scholar 

  85. Li G, Enache DI, Edwards J, Carley AF, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts. Catal Lett 110(1):7–13

    Article  CAS  Google Scholar 

  86. Dijksman A, Marino-Gonzalez A, Mairata I Payeras A, Arends IW, Sheldon RA (2001) Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J Am Chem Soc 123(28):6826–6833

    Article  CAS  Google Scholar 

  87. Yamamoto R, Sawayama YS, Shibahara H, Ichihashi Y, Nishiyama S, Tsuruya S (2005) Promoted partial oxidation activity of supported Ag catalysts in the gas-phase catalytic oxidation of benzyl alcohol. J Catal 234(2):308–317

    Article  CAS  Google Scholar 

  88. Zhan G, Huang J, Du M, Sun D, Abdul-Rauf I, Lin W, Li Q (2012) Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: high activity and durability. Chem Eng J 187:232–238

    Article  CAS  Google Scholar 

  89. Choudhary VR, Dhar A, Jana P, Jha R, Uphade BS (2005) A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem 7(11):768–770

    Article  CAS  Google Scholar 

  90. Chen Y, Lim H, Tang Q, Gao Y, Sun T, Yan Q, Yang Y (2010) Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl Catal A 380(1–2):55–65

    Article  CAS  Google Scholar 

  91. Villa A, Wang D, Dimitratos N, Su D, Trevisan V, Prati L (2010) Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal Today 150(1–2):8–15

    Article  CAS  Google Scholar 

  92. Fu X, Yu H, Peng F, Wang H, Qian Y (2007) Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Appl Catal A 321(2):190–197

    Article  CAS  Google Scholar 

  93. Fu X, Feng J, Wang H, Ng KM (2010) Fast synthesis and formation mechanism of γ-MnO2 hollow nanospheres for aerobic oxidation of alcohols. Mater Res Bull 45(9):1218–1223

    Article  CAS  Google Scholar 

  94. Zhang X, Fu X, Zhang Y et al (2016) Transition metal-free carbon quantum dots for selective liquid phase oxidation of alcohols using water as an only solvent. Catal Lett 146:945–950. https://doi.org/10.1007/s10562-016-1714-9

    Article  CAS  Google Scholar 

  95. Ren P, Fu X, Zhang Y (2017) Carbon quantum dots-TiO2 nanocomposites with enhanced catalytic activities for selective liquid phase oxidation of alcohols. Catal Lett 147:1679–1685. https://doi.org/10.1007/s10562-017-2065-x

    Article  CAS  Google Scholar 

  96. Samanta S, Khilari S, Srivastava R (2018) Stimulating the visible-light catalytic activity of Bi2MoO6 nanoplates by embedding carbon dots for the efficient oxidation, cascade reaction, and photoelectrochemical O2 evolution. ACS Appl Nano Mater 1:426–441. https://doi.org/10.1021/acsanm.7b00282

    Article  CAS  Google Scholar 

  97. Sarma D, Majumdar B, Sarma TK (2018) Carboxyl-functionalized carbon dots as competent visible light photocatalysts for aerobic oxygenation of alkyl benzenes: role of surface functionality. ACS Sustain Chem Eng 6:16573–16585. https://doi.org/10.1021/acssuschemeng.8b03811

    Article  CAS  Google Scholar 

  98. Guo Y, Fan L, Liu M et al (2020) Nitrogen-doped carbon quantum dots-decorated Mg-Al layered double hydroxide-supported gold nanocatalysts for efficient base-free oxidation of benzyl alcohol. Ind Eng Chem Res 59:636–646. https://doi.org/10.1021/acs.iecr.9b04296

    Article  CAS  Google Scholar 

  99. Prathibha E, Rangasamy R, Sridhar A, Lakshmi K (2020) Synthesis and characterization of Fe3O4/carbon dot supported MnO2 nanoparticles for the controlled oxidation of benzyl alcohols. ChemistrySelect 5:988–993. https://doi.org/10.1002/slct.201903706

    Article  CAS  Google Scholar 

  100. Mohammadi M, Khazaei A, Rezaei A et al (2019) Ionic-liquid-modified carbon quantum dots as a support for the immobilization of tungstate ions (WO42- ): heterogeneous nanocatalysts for the oxidation of alcohols in water. ACS Sustain Chem Eng 7:5283–5291. https://doi.org/10.1021/acssuschemeng.8b06279

    Article  CAS  Google Scholar 

  101. Mohammadi M, Rezaei A, Khazaei A et al (2019) Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl Mater Interfaces 11:33194–33206. https://doi.org/10.1021/acsami.9b07961

    Article  CAS  Google Scholar 

  102. Kumar A, Hamdi A, Coffinier Y et al (2018) Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst. J Photochem Photobiol A 356:457–463. https://doi.org/10.1016/j.jphotochem.2018.01.033

    Article  CAS  Google Scholar 

  103. Wang Q, Li J, Tu X et al (2020) Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem Mater 32:734–743. https://doi.org/10.1021/acs.chemmater.9b03708

    Article  CAS  Google Scholar 

  104. Ye J, Ni K, Liu J et al (2018) Oxygen-rich carbon quantum dots as catalysts for selective oxidation of amines and alcohols. ChemCatChem 10:259–265. https://doi.org/10.1002/cctc.201701148

    Article  CAS  Google Scholar 

  105. Hadian-Dehkordi L, Rezaei A, Ramazani A et al (2020) Amphiphilic carbon quantum dots as a bridge to a pseudohomogeneous catalyst for selective oxidative cracking of alkenes to aldehydes: a nonmetallic oxidation system. ACS Appl Mater Interfaces 12:31360–31371. https://doi.org/10.1021/acsami.0c05025

    Article  CAS  Google Scholar 

  106. Bourlinos AB, Rathi AK, Gawande MB et al (2017) Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide. Appl Mater Today 7:179–184. https://doi.org/10.1016/j.apmt.2017.03.002

    Article  Google Scholar 

  107. Chang Q, Yang S, Li L et al (2018) Loading sulfur and nitrogen co-doped carbon dots onto g-C3N4 nanosheets for an efficient photocatalytic reduction of 4-nitrophenol. Dalt Trans 47:6435–6443. https://doi.org/10.1039/c8dt00735g

    Article  CAS  Google Scholar 

  108. Chai YY, Qu DP, Ma DK et al (2018) Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine. Appl Surf Sci 450:1–8. https://doi.org/10.1016/j.apsusc.2018.04.121

    Article  CAS  Google Scholar 

  109. Liu M, Wang R, Liu B et al (2019) Carbon quantum dots @ Pd-SnS2 nanocomposite: the role of CQDs @ Pd nanoclusters in enhancing photocatalytic reduction of aromatic nitro compounds. J Coll Interface Sci 555:423–430. https://doi.org/10.1016/j.jcis.2019.08.002

    Article  CAS  Google Scholar 

  110. Cailotto S, Negrato M, Daniele S et al (2020) Carbon dots as photocatalysts for organic synthesis: metal-free methylene-oxygen-bond photocleavage. Green Chem 22:1145–1149. https://doi.org/10.1039/c9gc03811f

    Article  CAS  Google Scholar 

  111. Sadjadi S, Heravi MM, Mohammadi L, Malmir M (2019) Pd@magnetic carbon dot immobilized on the cyclodextrin nanosponges - biochar hybrid as an efficient hydrogenation catalyst. ChemistrySelect 4:7300–7307. https://doi.org/10.1002/slct.201901451

    Article  CAS  Google Scholar 

  112. Wang B, Deng Z, Li Z (2020) Efficient chemoselective hydrogenation of nitrobenzene to aniline, azoxybenzene and azobenzene over CQDs/ZnIn2S4 nanocomposites under visible light. J Catal 389:241–246. https://doi.org/10.1016/j.jcat.2020.05.041

    Article  CAS  Google Scholar 

  113. Mayank SA, Kaur N et al (2017) A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Mol Catal 439:100–107. https://doi.org/10.1016/j.mcat.2017.06.032

    Article  CAS  Google Scholar 

  114. Narayanan DP, Cherikallinmel SK, Sankaran S, Narayanan BN (2018) Functionalized carbon dot adorned coconut shell char derived green catalysts for the rapid synthesis of amidoalkyl naphthols. J Coll Interface Sci 520:70–80. https://doi.org/10.1016/j.jcis.2018.02.077

    Article  CAS  Google Scholar 

  115. Majumdar B, Mandani S, Bhattacharya T et al (2017) Probing carbocatalytic activity of carbon nanodots for the synthesis of biologically active dihydro/spiro/glyco quinazolinones and aza-michael adducts. J Org Chem 82:2097–2106. https://doi.org/10.1021/acs.joc.6b02914

    Article  CAS  Google Scholar 

  116. Majumdar B, Sarma D, Jain S, Sarma TK (2018) One-pot magnetic iron oxide-carbon nanodot composite-catalyzed cyclooxidative aqueous tandem synthesis of quinazolinones in the presence of tert-butyl hydroperoxide. ACS Omega 3:13711–13719. https://doi.org/10.1021/acsomega.8b01794

    Article  CAS  Google Scholar 

  117. Sarmasti N, Khazaei A, Yousefi Seyf J (2019) High density sulfonated magnetic carbon quantum dots as a photo enhanced, photo-induced proton generation, and photo switchable solid acid catalyst for room temperature one-pot reaction. Res Chem Intermed 45:3929–3942. https://doi.org/10.1007/s11164-019-03829-w

    Article  CAS  Google Scholar 

  118. Shi L, Xia W (2012) Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem Soc Rev 41(23):7687–7697

    Article  CAS  Google Scholar 

  119. To WP, Liu Y, Lau TC, Che CM (2013) A robust palladium (II)–porphyrin complex as catalyst for visible light induced oxidative C·H functionalization. Chem Eur J 19(18):5654–5664

    Article  CAS  Google Scholar 

  120. North M (2004) Oxidative synthesis of α-amino nitriles from tertiary amines. Angew Chem Int Ed 43(32):4126–4128

    Article  CAS  Google Scholar 

  121. Guo S, Qian B, Xie Y, Xia C, Huang H (2011) Copper-catalyzed oxidative amination of benzoxazoles via C− H and C− N bond activation: a new strategy for using tertiary amines as nitrogen group sources. Org Lett 13(3):522–525

    Article  CAS  Google Scholar 

  122. Enders D, Shilvock JP (2000) Some recent applications of α-amino nitrile chemistry. Chem Soc Rev 29(5):359–373

    Article  CAS  Google Scholar 

  123. Rueping M, Zhu S, Koenigs RM (2011) Visible-light photoredox catalyzed oxidative Strecker reaction. Chem Commun 47(47):12709–12711

    Article  CAS  Google Scholar 

  124. Lalevée J, Peter M, Dumur F, Gigmes D, Blanchard N, Tehfe MA, Fouassier JP (2011) Subtle ligand effects in oxidative photocatalysis with iridium complexes: application to photopolymerization. Chem Eur J 17(52):15027–15031

    Article  CAS  Google Scholar 

  125. Maaoui H, Kumar P, Kumar A, Pan GH et al (2016) A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines. Photochem Photobiol Sci 15:1282–1288. https://doi.org/10.1039/C6PP00203J

    Article  CAS  Google Scholar 

  126. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137

    Article  CAS  Google Scholar 

  127. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114(14):2708–2711

    Article  Google Scholar 

  128. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  CAS  Google Scholar 

  129. Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan AC, Levy M, Wu P (2010) Biocompatible copper (I) catalysts for in vivo imaging of glycans. J Am Chem Soc 132(47):16893–16899

    Article  CAS  Google Scholar 

  130. Bear JC, Hollingsworth N, McNaughter PD, Mayes AG, Ward MB, Nann T, Parkin IP (2014) Copper-doped CdSe/ZnS quantum dots: controllable photoactivated copper (I) cation storage and release vectors for catalysis. Angew Chem Int Ed 53(6):1598–1601

    Article  CAS  Google Scholar 

  131. Liu ZX, Bin CB, Liu ML et al (2017) Cu(I)-doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide-alkyne cycloadditions. Green Chem 19:1494–1498. https://doi.org/10.1039/c6gc03288e

    Article  Google Scholar 

  132. Li H, Sun C, Ali M et al (2015) Sulfated carbon quantum dots as efficient visible-light switchable acid catalysts for room-temperature ring-opening reactions. Angew Chemie Int Ed 54:8420–8424. https://doi.org/10.1002/anie.201501698

    Article  CAS  Google Scholar 

  133. Rosso C, Filippini G, Prato M (2019) Use of nitrogen-doped carbon nanodots for the photocatalytic fluoroalkylation of organic compounds. Chem Eur J 25:16032–16036. https://doi.org/10.1002/chem.201903433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjupriya, R., Roopan, S.M. Carbon dots-based catalyst for various organic transformations. J Mater Sci 56, 17369–17410 (2021). https://doi.org/10.1007/s10853-021-06354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06354-7

Navigation