Skip to main content
Log in

Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, the two-dimensional heterostructure is a research hot spot of semiconductor materials, and it has wide application prospects in electronic devices and photocatalysis. In this work, we constructed novel graphene-GaN-graphene (G-GaN-G) sandwich heterostructure, and the electronic and optical properties have been theoretically investigated based on the first principles calculations. The computation results indicate that the heterostructure is most stable when interlayer distance d0 is 3.189 Å, and electronic and optical properties of intrinsic GaN and graphene are well preserved. In addition, the effect of vertical and biaxial strain on the G-GaN-G heterostructure is also investigated, we find that strain can effectively regulate the electronic and optical properties. Therefore, the electronic and optical properties of G-GaN-G can be tuned by applying different levels of strain to meet the needs of devices. This study results reveal that the G-GaN-G sandwich heterostructure can be hopefully applied to ultraviolet photodetectors and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  2. Rao CEE, Sood AE, Subrahmanyam KE, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  3. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  Google Scholar 

  4. Zhang Y, Tian Y, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in grapheme. Nature 438:201–204

    Article  CAS  Google Scholar 

  5. Hendry E, Hale P, Moger J, Savchenko AK (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:212–217

    Article  Google Scholar 

  6. Koshino M, Ando T (2008) Magneto-optical properties of multilayer graphene Phys. Rev B 77:115313

    Article  Google Scholar 

  7. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  CAS  Google Scholar 

  8. Fan X, Shen Z, Liu AQ, Kuo J (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165

    Article  CAS  Google Scholar 

  9. Gao X, Wei Z, Meunier V, Sun Y, Zhang S (2013) Opening a large band gap for graphene by covalent addition. Chem Phys Lett 555:1–6

    Article  CAS  Google Scholar 

  10. Jariwala D, Srivastava A, Ajayan PM (2011) Graphene Synthesis and Band Gap Opening. J Nanosci Nanotechnol 11:6621–6641

    Article  CAS  Google Scholar 

  11. Fei R, Yang L (2014) Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14:2884–2889

    Article  CAS  Google Scholar 

  12. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    Article  CAS  Google Scholar 

  13. Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J, Mandrus DG, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden DH, Xu X (2014) Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 9:268–272

    Article  CAS  Google Scholar 

  14. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large-Area Vapor-Phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971

    Article  CAS  Google Scholar 

  15. Qian X, Liu J, Fu L, Li J (2014) Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346:1344–1347

    Article  CAS  Google Scholar 

  16. Rodin AS, Carvalho A, Neto AHC (2014) Strain-induced gap modification in black phosphorus. Phys Rev Lett 112:176801

    Article  CAS  Google Scholar 

  17. Sun M, Chou J, Ren Q, Zhao Y, Yu J, Tang W (2017) Tunable schottky barrier in van der waals heterostructures of graphene and g-GaN Appl. Phys Lett 110:173105

    Google Scholar 

  18. Liu B, Yang W, Li J, Zhang X, Niu P, Jiang X (2017) Template approach to crystalline GaN nanosheets. Nano Lett 17:3195–3201

    Article  CAS  Google Scholar 

  19. Chen Y, Liu K, Liu J, Lv T, Wei B, Zhang T, Zeng M, Wang Z, Fu L (2017) Growth of 2D GaN single crystals on liquid metals. J Am Chem Soc 140:16392–16395

    Article  Google Scholar 

  20. Yang H, Li J, Jia R, Yang L, Li L (2016) Catalyst-free and selective growth of hierarchical GaN nanostructure on the graphene nanosheet. RSC Adv 6:43874–43880

    Article  CAS  Google Scholar 

  21. Beiranvand R, Valedbagi S (2016) Electronic and optical properties of advance semiconductor materials: BN, AlN and GaN nanosheets from first principles. Optik 127:1553–1560

    Article  CAS  Google Scholar 

  22. Chen G, Wang D, Wen J, Yang A, Zhang J (2016) Structural, electronic, and magnetic properties of 3d transition metal doped GaN nanosheet: a first-principles study. Int J Quantum Chem 116:1000–1005

    Article  CAS  Google Scholar 

  23. Chen G, Li H, Yang X, Wen J, Pang Q, Zhang J (2018) Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: a first-principles study. Superlattices Microstruct 115:108–115

    Article  CAS  Google Scholar 

  24. Cui Z, Bai K, Wang X, Li E, Zheng J (2020) Electronic, magnetism, and optical properties of transition metals adsorbed g-GaN. Phys E 118:113871

    Article  CAS  Google Scholar 

  25. Zhang H, Meng F, Wu Y (2017) Two single-layer porous gallium nitride nanosheets: a first-principles study. Solid State Commun 250:18–22

    Article  CAS  Google Scholar 

  26. Attia AA, Jappor HR (2019) Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals heterostructures with the potential for photovoltaic applications. Chem Phys Lett 728:124–131

    Article  CAS  Google Scholar 

  27. Cui Z, Bai K, Ding Y, Wang X, Li E, Zheng J, Wang S (2020) Electronic and optical properties of janus mosse and ZnO vdWs heterostructures. Superlattices Microstruct 140:106445

    Article  CAS  Google Scholar 

  28. Li C, Hou Q (2019) The effects of point defects on the electronic and magnetic properties of GaN/ZnO heterojunction polar interface. Comput Mater Sci 157:136–141

    Article  CAS  Google Scholar 

  29. Pham KD, Nguyen CV, Phung HTT, Phuc HV, Amin B, Hieu NN (2019) Strain and electric field tunable electronic properties of type-II band alignment in van der Waals GaSe/MoSe2 heterostructure. Chem Phys 521:92–99

    Article  CAS  Google Scholar 

  30. Sun M, Chou J, Yu J, Tang W (2017) Electronicproperties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys Chem Chem Phys 19:17324–17330

    Article  CAS  Google Scholar 

  31. Zhang H, Zhang Y, Liu H, Liu L (2014) Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. J Mater Chem 2:15389–15395

    Article  CAS  Google Scholar 

  32. Yang Q, Zhang S, Tan C, Ye H, Ming X, Ingebrandt S, Chen X (2017) Considering the spin–orbit coupling effect on the photocatalytic performance of AlN/MX2 nanocomposites. J Mater Chem C 5:9412–9420

    Article  CAS  Google Scholar 

  33. Cui Z, Ren K, Zhao Y, Wang X, Shu H, Yu J, Tang W, Sun M (2019) Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl Surf Sci 492:513–519

    Article  CAS  Google Scholar 

  34. Deng Z, Wang X, Cui J (2019) Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Adv 9:13418–13423

    Article  CAS  Google Scholar 

  35. Huang T, Chen Q, Cheng M, Huang W, Hu W, Huang G (2019) Tunable Schottky barrier in van der Waals heterostructures of graphene and hydrogenated phosphorus carbide monolayer: first-principles calculations. J Phys D Appl Phys 52:305104

    Article  CAS  Google Scholar 

  36. Li H, Zhou Z, Zhang K, Wang H (2019) Schottky barrier modulation of a GaTe/graphene heterostructure by interlayer distance and perpendicular electric field. Nanotechnology 30:405207

    Article  CAS  Google Scholar 

  37. Pham KD, Bach LG, Amin B, Idrees M, Hieu NN, Phuc HV, Bui HD, Nguyen CV (2019) Tri-layered van der Waals heterostructures based on graphene, gallium selenide and molybdenum selenide. J Appl Phys 125:225304

    Article  Google Scholar 

  38. Pham KD, Hieu NN, Phuc HV, Fedorov IA, Duque CA, Amin B, Nguyen CV (2018) Layered graphene/GaS van der Waals heterostructure: controlling the electronic properties and schottky barrier by vertical strain. Appl Phys Lett 113:171605

    Article  Google Scholar 

  39. Sun Z, Chu H, Li Y, Zhao S, Li G, Li D (2019) Theoretical investigation on electronic and optical properties of the graphene-MoSe2-graphene sandwich heterostructure. Mater Des 183:108129

    Article  CAS  Google Scholar 

  40. Zheng J, Li E, Ma D, Cui Z, Peng T, Wang X (2019) Effect on schottky barrier of graphene/WS2 heterostructure with vertical electric field and biaxial strain. Phys Status Solidi B 256:1900161

    Article  CAS  Google Scholar 

  41. Zheng J, Li E, Cui Z, Ma D, Wang X (2020) Effects of doping and biaxial strain on the electronic properties of GaN/graphene/WS2 trilayer vdW heterostructure. J Mater Sci 55:11999–12007

    Article  CAS  Google Scholar 

  42. Liu X, Zhang Z, Luo Z, Lv B, Ding Z (2019) Tunable electronic properties of graphene/g-AlN heterostructure: the effect of vacancy and strain engineering. Nanomaterials 9:1674

    Article  CAS  Google Scholar 

  43. Huang K, Liu Y, Wang H, Gan T, Liu Y, Wang L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens Actuators B 191:828–836

    Article  CAS  Google Scholar 

  44. Liu Y, Wang W, Wang Y, Peng X (2014) Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 7:25–32

    Article  Google Scholar 

  45. Giannazzo F, Greco G, Schilirò E, Nigro RL, Deretzis I, Magna AL, Roccaforte F, Iucolano F, Ravesi S, Frayssinet E, Michon A, Cordier Y (2019) High-performance graphene/AlGaN/GaN schottky junctions for hot electron transistors. ACS Appl Electron Mater 1:2342–2354

    Article  CAS  Google Scholar 

  46. Zubair A, Nourbakhsh A, Hong J, Qi M, Song Y, Jena D, Kong J, Dresselhaus M, Palacios T (2017) Hot electron transistor with van der waals base-collector heterojunction and high-performance GaN emitter. Nano Lett 17:3089–3096

    Article  CAS  Google Scholar 

  47. Balushi ZYA, Wang K, Ghosh RK, Vila RA, Eichfeld SM, Caldwell JD, Qin X, Lin Y, Desario PA, Stone G, Subramanian S, Paul DF, Wallace RM, Datta S, Redwing JM, Robinson JA (2016) Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 15:1166–1171

    Article  Google Scholar 

  48. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1998) Perdew, burke, and ernzerhof reply. Phys Rev Lett 80:891–891

    Article  CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  51. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  52. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  53. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  54. Ma F, Guo Z, Xu K, Chu PK (2012) First-principle study of energy band structure of armchair graphene nanoribbons. Solid State Commun 152:1089–1093

    Article  CAS  Google Scholar 

  55. Zheng Y, Li E, Zhao B, Liu C, Bai K, Cui Z, Ma D (2020) First-principle study of g-AlxGa1-xN alloys: planar and buckled structures. Superlattices Microstruct 140:106430

    Article  CAS  Google Scholar 

  56. Tung RT (2014) The physics and chemistry of the schottky barrier height. Appl Phys Rev 1:011304

    Article  Google Scholar 

  57. Jain SK, Srivastava P (2013) Optical properties of hexagonal boron nanotubes by first−principles calculations. J Appl Phys 114:073514

    Article  Google Scholar 

  58. Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HW (2004) Superlubricity of graphite. Phys Rev Lett 92:126101

    Article  Google Scholar 

  59. Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang JS, Bechtel HA, Desai SB, Kronast F, Unal AA, Conti G, Conlon C, Palsson GK, Martin MC, Minor AM, Fadley CS, Yablonovitch E, Maboudian R, Javey A (2014) Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci U. S. A 111:6198–6202

    Article  CAS  Google Scholar 

  60. Clark SM, Jeon K, Chen JY, Yoo C (2013) Few-layer graphene under high pressure: raman and x-ray diffraction studies. Solid State Commun 154:15–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (51042010, 11904285), the Industrial Key Project Foundation of Shaanxi Province, China (No. 2019GY-208), and Industrial Key Project Foundation of Xi’an, China (No. 2019217814GXRC014CG015-GXYD 14.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enling Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, E., Zheng, Y. et al. Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure. J Mater Sci 56, 11402–11413 (2021). https://doi.org/10.1007/s10853-021-05998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05998-9

Navigation