Skip to main content

Advertisement

Log in

Energetically efficient and electrochemically tuneable exfoliation of graphite: process monitoring and product characterization

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, graphene oxide was prepared by electrochemical exfoliation of graphite in sodium dodecyl sulphate and sodium dodecylbenzene sulphonate aqueous solution. Two different working electrodes were investigated: an electrode prepared from natural graphite flakes and a commercial natural graphite rod. The working electrode was polarized in a two-electrode system by using platinum counter electrode and by a multistep change of polarity or by single anodic and cathodic polarization. The voltage value ranged from 2.5 to 3.2 V. By monitoring the current transients and the colour of the resultant solutions, it was shown that the exfoliation process depends on the type of working electrode, surfactants and applied voltage value. The multistep change of polarity was more effective compared to single polarization. The ultraviolet–visible spectrophotometry and Raman spectroscopy indicated the presence of defects within the graphene structure, while FTIR spectroscopy indicated the presence of oxygen functional groups, which is characteristic of graphene oxide (GO). Dynamic light scattering revealed that the solutions obtained in this work contained GO sheets within the size of 10–600 nm. Atomic force microscopy measurements proved that the obtained product contains multilayer sheets. The energy consumption for the process carried out in this work ranges from 0.084–0.038 kWh g−1, and therefore this process is considered to be a low-energy and cost-effective process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsovet AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Alanyalıoğlu M, Segura JJ, Oró –Solè J, Casañ-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50:142–152. https://doi.org/10.1016/j.carbon.2011.07.064

    Article  CAS  Google Scholar 

  3. Du X, Skachko IS, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended grapheme. Nat Nanotechnol 3:491–495. https://doi.org/10.1038/nnano.2008.199

    Article  CAS  Google Scholar 

  4. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  5. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  6. Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Elastic and frictional properties of graphene. Phys Status Solidi B 246:2562–2567. https://doi.org/10.1002/pssb.20098232

    Article  CAS  Google Scholar 

  7. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of grapheme. Science 320:1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  8. Pumera M, Ambrosi A, Bonanni A, Chang ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965. https://doi.org/10.1016/j.trac.2010.05.011

    Article  CAS  Google Scholar 

  9. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21. https://doi.org/10.1016/j.carbon.2012.11.030

    Article  CAS  Google Scholar 

  10. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Nat Aca Sci USA 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  11. Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo GV, Vanhulsel A, Haesendonck CV (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604. https://doi.org/10.1088/0957-4484/19/30/305604

    Article  CAS  Google Scholar 

  12. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  13. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruof RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  14. Wang G, Wang B, Park J, Wang Y, Sun B, Yao J (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47:3242–3246. https://doi.org/10.1016/j.carbon.2009.07.040

    Article  CAS  Google Scholar 

  15. Zhong YL, Tian Z, Simon GP, Li D (2015) Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18:73–78. https://doi.org/10.1016/j.mattod.2014.08.019

    Article  CAS  Google Scholar 

  16. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  17. Lu J, Yang J, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ASC Nano 3:2367–2375. https://doi.org/10.1021/nn900546b

    Article  CAS  Google Scholar 

  18. USPat.8,858,776 B2(Oct. 14, 2014), Li LJ, Su CY(AcademiaSinica, Taipei (TW))

  19. Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V et al (2013) The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv Funct Mater 37:4684–4693. https://doi.org/10.1002/adfm.201203686

    Article  CAS  Google Scholar 

  20. Yu P, Lowe SE, Simon GP, Zhong YL (2015) Electrochemical exfoliation of graphite and production of functional grapheme. Curr Opin Colloid Interface Sci 20:329–338. https://doi.org/10.1016/j.cocis.2015.10.007

    Article  CAS  Google Scholar 

  21. Chen D, Wang F, Li Y, Wang WW, Huang TX, Li YF, Novoselov KS, Tiana ZQ, Zhan D (2019) Programmed electrochemical exfoliation of graphite to high quality graphene. Chem Comm 55:3379–3382. https://doi.org/10.1039/C9CC00393B

    Article  CAS  Google Scholar 

  22. Munuera JM, Paredes JI, Villar-Rodil S, Ayán-Varela M, Martínez-Alonso A, Tascón JMD (2016) Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Nanoscale 8:2982–2998. https://doi.org/10.1039/C5NR06882G

    Article  CAS  Google Scholar 

  23. Hathcock KW, Brumfield JC, Goss CA, Irene EA, Murray RW (1995) Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal Chem 67:2201–2206. https://doi.org/10.1021/ac00109a045

    Article  CAS  Google Scholar 

  24. Noel M, Santhanam R (1998) Electrochemistry of graphite intercalation compounds. J Power Sourc 72:53–65. https://doi.org/10.1016/S0378-7753(97)02675-X

    Article  CAS  Google Scholar 

  25. Savoskin MV, Yaroshenko AP, Whyman GE, Mestechkin MM, Mysyk RD, Mochalin VN (2003) Theoretical study of stability of graphite intercalationcompounds with Brønsted acids. Carbon 41:2757–2760. https://doi.org/10.1016/S0008-6223(03)00385-3

    Article  CAS  Google Scholar 

  26. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  27. Parvez K, Li R, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Müllen K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ASC Nano 7:3598–3606. https://doi.org/10.1021/nn400576v

    Article  CAS  Google Scholar 

  28. Morales GM, Schifani P, Ellis G, Ballesteros C, Martinez G, Barbero C, Salavagione HJ (2011) High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 49:2809–2816. https://doi.org/10.1016/j.carbon.2011.03.008

    Article  CAS  Google Scholar 

  29. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891. https://doi.org/10.1021/ja203725d

    Article  CAS  Google Scholar 

  30. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J Am Chem Soc 134:17896–17899. https://doi.org/10.1021/ja309023f

    Article  CAS  Google Scholar 

  31. Munuera JM, Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2017) A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon 115:625–628. https://doi.org/10.1016/j.carbon.2017.01.038

    Article  CAS  Google Scholar 

  32. Xu M, Sun H, Shen C, Yang S, Que W, Zhang Y, Song X (2015) Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res 8:801–807. https://doi.org/10.1007/s12274-014-0562-4

    Article  CAS  Google Scholar 

  33. Su C, Lu A, Xu Y, Chen F, Khlobystov AN, Li L (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339. https://doi.org/10.1021/nn200025p

    Article  CAS  Google Scholar 

  34. Mohamed A, Ardyani T, Bakar SA, Brown P, Hollamby M, Sagisaka M, Eastoef J (2016) Graphene-philic surfactants for nanocomposites in latex technology. Adv Colloid Interface Sci 230:54–69. https://doi.org/10.1016/j.cis.2016.01.003

    Article  CAS  Google Scholar 

  35. Rao KS, Senthilnathan J, Liu YF, Yoshimura M (2014) Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci Rep 4:4237–4242. https://doi.org/10.1038/srep04237

    Article  CAS  Google Scholar 

  36. Tripathi P, atel CRP, Shaz MA, Srivastava ON, Synthesis of high-quality graphene through electrochemical exfoliation of graphite in alkaline electrolyte, [cond-mat.mtrl-sci]

  37. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525. https://doi.org/10.1002/adfm.200700797

    Article  CAS  Google Scholar 

  38. Gurzęda B, Buchwald T, Nocuń M, Bąkowicz A, Krawczyk P (2017) Graphene material preparation through thermal treatment of graphite oxide electrochemically synthesized in aqueous sulfuric acid. RCS Adv 32:19904–19911. https://doi.org/10.1039/c7ra01678f

    Article  CAS  Google Scholar 

  39. Achee TC, Sun W, Hope JT et al (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8:14525. https://doi.org/10.1038/s41598-018-32741-3

    Article  CAS  Google Scholar 

  40. Liu F, Wang C, Sui X, Xu M, Wei L, Chen Y (2019) Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1:173–199. https://doi.org/10.1002/cey2.14

    Article  Google Scholar 

  41. Wong CH, Sofer Z, Pumera M (2015) Geographical and geological origin of natural graphite heavily influence the electrical and electrochemical properties of chemically modified graphenes. Chem Eur J 21:8435–8440. https://doi.org/10.1002/chem.201500116

    Article  CAS  Google Scholar 

  42. Wissler M (2006) Graphite and carbon powders for electrochemical applications. J Power Sourc 156:142–150. https://doi.org/10.1016/j.jpowsour.2006.02.064

    Article  CAS  Google Scholar 

  43. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013750. https://doi.org/10.1063/1.2432410

    Article  CAS  Google Scholar 

  44. Hsieh CT, Hsueh JH (2016) Electrochemical exfoliation of graphene sheets from a natural graphite flask in the presence of sulfate ions at different temperatures. RSC Adv 6:64826–64831. https://doi.org/10.1039/C6RA15447F

    Article  CAS  Google Scholar 

  45. Choo H, Kinumoto T, Nose M, Miyazakia K, Abe T, Ogumi Z (2008) Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution. J Power Sourc 185:740–746. https://doi.org/10.1016/j.jpowsour.2008.07.086

    Article  CAS  Google Scholar 

  46. Choo H, Kinumoto T, Jeong S, Iriyama Y, Abe T, Ogumi Z (2007) Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J Electrochem Soc 154:1017–1023. https://doi.org/10.1149/1.2767411

    Article  CAS  Google Scholar 

  47. Yang S, Ricciardulli AG, Liu S, Dong R, Lohe MR, Becker A, Squillaci MA, Samor P et al (2017) Ultrafast delamination of graphite into high-quality graphene using alternating currents. Angew Chem Int Ed 56:1–8. https://doi.org/10.1002/anie.201702076

    Article  CAS  Google Scholar 

  48. Jamaluddin NA, Mohamed A, Baka SA et al (2020) Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: colloidal behaviour and application in water treatment. Phys Chem Chem Phys 22:12732. https://doi.org/10.1039/D0CP01243B

    Article  CAS  Google Scholar 

  49. Yi Y, Weinberg G, Prenzel M, Greiner M, Heumann M, Becker S, Schlögl R (2017) Electrochemical corrosion of a glassy carbon electrode. Catal Today 295:32–40. https://doi.org/10.1016/j.cattod.2017.07.013

    Article  CAS  Google Scholar 

  50. Piñeiro-Prado I, Salinas-Torres D, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2016) Design of activatedcarbon/activated carbonasymmetric capacitors. Front Mater 3:16. https://doi.org/10.3389/fmats.2016.00016

    Article  Google Scholar 

  51. Chen J, Zhang X, Zheng X, Liu C, Cui X, Zheng W (2013) Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios. Mater Chem Phys 139:8–11. https://doi.org/10.1016/j.matchemphys.2012.12.025

    Article  CAS  Google Scholar 

  52. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  53. Raić M, Sačer D, Kraljić Roković M (2019) Structural and capacitive properties of graphene obtained by a green method of graphene oxide reduction. Chem Biochem Eng Q. 33:385–393. https://doi.org/10.15255/CABEQ.2019.1609

    Article  Google Scholar 

  54. Gurzęda B, Florczak P, Kempiński M, Peplińska B, Krawczyka P, Jurga S (2016) Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon 100:540–545. https://doi.org/10.1016/j.carbon.2016.01.044

    Article  CAS  Google Scholar 

  55. Tien HN, Luan VH, Cuong TV, Kong BS, Chung JS, Kim EJ, Hur SH (2012) Fast and simple reduction of graphene oxide in various organic solvents using microwave irradiation. J Nanosci Nanotechnol 12:5658. https://doi.org/10.1166/jnn.2012.6340

    Article  CAS  Google Scholar 

  56. Yang S, Lohe MR, Müllen K, Feng X (2016) New-generation graphene from electrochemical approaches: production and applications. Adv Mater 28:6213–6221. https://doi.org/10.1002/adma.201505326

    Article  CAS  Google Scholar 

  57. Sačer D, Spajić I, Kraljić Roković M, Mandić Z (2018) New insights into chemical and electrochemical functionalization of graphene oxide electrodes by o-phenylenediamine and their potential applications. J Mater Sci 53:15285. https://doi.org/10.1007/s10853-018-2693-6

    Article  CAS  Google Scholar 

  58. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258. https://doi.org/10.1016/j.mtchem.2018.09.00759

    Article  CAS  Google Scholar 

  59. Tian L, Chen F, Ding H, Li X, Li X (2020) The influence of inorganic electrolyte on the properties of carbon quantum dots in electrochemical exfoliation. J Electroanal Chem 878:114673. https://doi.org/10.1016/j.jelechem.2020.114673

    Article  CAS  Google Scholar 

  60. Xia Z, Maccaferri G, Zanardi C, Christian M, Ortolani L et al (2019) Dispersion stability and surface morphology study of electrochemically exfoliated bilayer graphene oxide. J Phys Chem C 123:15122–15130. https://doi.org/10.1021/acs.jpcc.9b03395

    Article  CAS  Google Scholar 

  61. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  62. Lindfors T, Boeva ZA, Latonen RM (2014) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide. RCS Adv 4:25279–25286. https://doi.org/10.1039/C4RA03423F

    Article  CAS  Google Scholar 

  63. Gutić SJ, Jovanović AZ, Dobrota AS, Metarap D, Rafailović LD, Mentus SV (2018) Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: from sol-gel derived powder catalysts to graphene supported co-electrodeposits. Inter J Hydrogen Energ 43:16864–16858. https://doi.org/10.1016/j.ijhydene.2017.11.131

    Article  CAS  Google Scholar 

  64. https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_non-household_consumers, August27th, 2020.

  65. https://www.graphenea.com/collections/all, August27th, 2020.

Download references

Acknowledgement

The authors are grateful to the “Croatian Science Foundation” for the financial support of the project ˝High power−high energy electrochemical supercapacitor for hybrid electrical vehicles˝, IP-2013-11-8825. The financial support of the Foundation of the Croatian Academy of Sciences and Arts for projects “Electrochemical exfoliation of graphite in surfactant solution” is gratefully acknowledged. Davor Čapeta and Iva Šrut Rakić acknowledge financial support by the Center of Excellence for Advanced Materials and Sensing Devices (ERDF Grant No. KK.01.1.1.01.0001). The authors would like to thank Professor Tajana Preočanin (Department of Chemistry, Faculty of Science, University of Zagreb) for dynamic light scattering measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Kraljić Roković.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ljubek, G., Čapeta, D., Šrut Rakić, I. et al. Energetically efficient and electrochemically tuneable exfoliation of graphite: process monitoring and product characterization. J Mater Sci 56, 10859–10875 (2021). https://doi.org/10.1007/s10853-021-05989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05989-w

Navigation