Skip to main content
Log in

Supercritical CO2-assisted microfluidization as ultra-high efficiency strategy for graphene preparation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Traditional “top-down” methods for graphene preparation, like micromechanical cleavage and ultrasound methods, usually cannot preserve both efficiency and quality simultaneously. Herein, we provide an environmental-friendly graphene exfoliating method with high efficiency and high quality that combines the microfluidization process (liquid phase) and supercritical carbon dioxide process (gas phase), namely the dual-phase exfoliating (DPE) method. The combination of effective tangential force (shearing force) and normal force (push and pull), which are originally from microfluidization and supercritical carbon dioxide process, respectively, maximizes the exfoliating efficiency. The DPE method offers a high yield of up to 70.25% for graphene preparation (941.04 g per day theoretically), while the graphene sheets could remain single or a few layers (> 80%) and around micron size. By molecular dynamic simulations, it is theoretically proved that carbon dioxide can intercalate between graphite layers and expand the interlayer spacing under supercritical conditions. This DPE method, by combining the advantages of different phase processes, provides an ideal process design perspective for large-scale preparation of other 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  3. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X (2014) Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 5:1–8

    Article  Google Scholar 

  4. Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer grapheme. Nature 459:820–823

    Article  CAS  Google Scholar 

  5. Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18:520–524

    Article  CAS  Google Scholar 

  6. Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J (2017) Scalable exfoliation and dispersion of two-dimensional materials–an update. Phys Chem Chem Phys 19:921–960

    Article  CAS  Google Scholar 

  7. Witomska S, Leydecker T, Ciesielski A, Samorì P (2019) Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv Function Mater 29:1901126

    Article  CAS  Google Scholar 

  8. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624

    Article  CAS  Google Scholar 

  9. Arao Y, Mizuno Y, Araki K, Kubouchi M (2016) Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow. Carbon 102:330–338

    Article  CAS  Google Scholar 

  10. Varrla E, Paton KR, Backes C, Harvey A, Smith RJ, McCauley J, Coleman JN (2014) Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6:11810–11819

    Article  CAS  Google Scholar 

  11. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891

    Article  CAS  Google Scholar 

  12. Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhman I, Su Y, Mesite SV, Johnstone DN (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755

    Article  CAS  Google Scholar 

  13. Panagiotou T, Mesite S, Bernard J, Chomistek K, Fisher R (2008) Production of polymer nanosuspensions using microfluidizer processor based technologies. In: Proceedings of the nanotechnology conference and trade show, pp 688–691

  14. Panagiotou T, Bernard JM, Mesite SV (2008) Deagglomeration and dispersion of carbon nanotubes using microfluidizer high shear fluid processors. In: Nano science and technology institute (NSTI) conference and expo proceedings, pp 39–42

  15. Rizvi R, Nguyen EP, Kowal MD, Mak WH, Rasel S, Islam MA, Abdelaal A, Joshi AS, Zekriardehani S, Coleman MR, Kaner RB (2018) High-throughput continuous production of shear-exfoliated 2d layered materials using compressible flows. Adv Mater 30:11

    Article  CAS  Google Scholar 

  16. Wu B, Yang X (2011) A molecular simulation of interactions between graphene nanosheets and supercritical CO2. J Colloid Interface Sci 361:1–8

    Article  CAS  Google Scholar 

  17. Rangappa D, Sone K, Wang M, Gautam UK, Golberg D, Itoh H, Ichihara M, Honma I (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem–A Eur J 16:6488–6494

    Article  CAS  Google Scholar 

  18. Li L, Zheng X, Wang J, Sun Q, Xu Q (2012) Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustain Chem Eng 1:144–151

    Article  CAS  Google Scholar 

  19. Zhu H, Zhang C, Tang Y, Wang J, Ren B (2007) Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45:226–228

    Article  CAS  Google Scholar 

  20. Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534

    Article  CAS  Google Scholar 

  21. Xu S, Xu Q, Wang N, Chen Z, Tian Q, Yang H, Wang K (2015) Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater 27:3262–3272

    Article  CAS  Google Scholar 

  22. Guardia L, Fernández-Merino M, Paredes J, Solis-Fernandez P, Villar-Rodil S, Martinez-Alonso A, Tascón J (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662

    Article  CAS  Google Scholar 

  23. Santos HM, Lodeiro C, Capelo-Martinez J-L (2009) In Ultrasound in chemistry: analytical applications. Wiley, NJ

    Google Scholar 

  24. Atiemo-Obeng VA, Calabrese RV (2004) Rotor-stator mixing devices. In: Handbook of industrial mixing: science and practice. Wiley, pp 479–505

  25. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589

    Article  CAS  Google Scholar 

  26. Paton KR, Anderson J, Pollard AJ, Sainsbury T (2017) Production of few-layer graphene by microfluidization. Mater Res Express 4:025604

    Article  CAS  Google Scholar 

  27. Xu Y, Chen S, Dou Z, Ma Y, Mi Y, Du W, Liu Y, Zhang J, Chang J, Liang C, Zhou J, Guo H, Gao P, Liu X, Che Y, Zhang Y (2019) Robust production of 2D quantum sheets from bulk layered materials. Mater Horizons. https://doi.org/10.1039/C9MH00272C

    Article  Google Scholar 

  28. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  CAS  Google Scholar 

  29. Zhang S-L, Zhang Z, Yang W-C (2016) High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds. Appl Surf Sci 360:323–328

    Article  CAS  Google Scholar 

  30. Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1700589

    Article  CAS  Google Scholar 

  31. Song NN, Jia JF, Wang WC, Gao YH, Zhao YP, Chen Y (2016) Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem Eng J 298:198–205

    Article  CAS  Google Scholar 

  32. Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989

    Article  CAS  Google Scholar 

  33. Zhang J, Han B, Zhang C, Li W, Feng X (2008) Nanoemulsions induced by compressed gases. Angewandte Chemie Int Ed 47:3012–3015

    Article  CAS  Google Scholar 

  34. Zhang J, Han B, Zhao Y, Li J, Yang G (2011) Switching micellization of Pluronics in water by CO2. Chem–A Eur J 17:4266–4272

    Article  CAS  Google Scholar 

  35. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun’Ko YK (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol\ 3:563

    Article  CAS  Google Scholar 

  36. Zhu Y, Ji H, Cheng H-M, Ruoff RS (2017) Mass production and industrial applications of graphene materials. Natl Sci Rev 5:90–101

    Article  CAS  Google Scholar 

  37. Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7:2758–2763

    Article  CAS  Google Scholar 

  38. Meyer JC, Geim A, Katsnelson M, Novoselov K, Obergfell D, Roth S, Girit C, Zettl A (2007) On the roughness of single-and bi-layer graphene membranes. Solid State Commun 143:101–109

    Article  CAS  Google Scholar 

  39. Warner JH, Rümmeli MH, Gemming T, Büchner B, Briggs GAD (2009) Direct imaging of rotational stacking faults in few layer grapheme. Nano Lett 9:102–106

    Article  CAS  Google Scholar 

  40. Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X, Mullen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Article  CAS  Google Scholar 

  41. Park JS, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus MS (2009) G′ band Raman spectra of single, double and triple layer grapheme. Carbon 47:1303–1310

    Article  CAS  Google Scholar 

  42. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of grapheme. Nature Nanotechnol 8:235

    Article  CAS  Google Scholar 

  43. Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA, Bacher G, Mertin W (2013) The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102:023114

    Article  CAS  Google Scholar 

  44. Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Morańska M, Setkiewicz M (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16:103

    Article  CAS  Google Scholar 

  45. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  46. Johnston K, Harrison K, Clarke M, Howdle S, Heitz M, Bright F, Carlier C, Randolph T (1996) Water-in-carbon dioxide microemulsions: an environment for hydrophiles including proteins. Science 271:624–626

    Article  CAS  Google Scholar 

  47. Zhuo S, Huang Y, Peng C, Liu H, Hu Y, Jiang J (2010) CO2-induced microstructure transition of surfactant in aqueous solution: insight from molecular dynamics simulation. J Phys Chem B 114:6344–6349

    Article  CAS  Google Scholar 

  48. Munson BR, Young DF, Okiishi TH (2006) Fundamentals of fluid mechanics. Wiley, USA

    Google Scholar 

  49. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of grapheme. J Mater Chem A 3:11700–11715

    Article  CAS  Google Scholar 

  50. Zhang J, Han B (2012) Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc Chem Res 46:425–433

    Article  CAS  Google Scholar 

  51. Qi Y, Xu Q, Wang Y, Yan B, Ren Y, Chen Z (2016) CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2d MOS2 nanosheets. ACS Nano 10:2903–2909

    Article  CAS  Google Scholar 

  52. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  53. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  54. Konatham D, Striolo A (2008) Molecular design of stable graphene nanosheets dispersions. Nano Lett 8:4630–4641

    Article  CAS  Google Scholar 

  55. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  CAS  Google Scholar 

  56. Berendsen HJP, van Gunsteren WF, DiNola A (1984) J Haak Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  57. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  58. Astrakas LG, Gousias C, Tzaphlidou M (2012) Structural destabilization of chignolin under the influence of oscillating electric fields. J Appl Phys 111:074702

    Article  CAS  Google Scholar 

  59. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  60. Van Gunsteren WF, Berendsen HJ (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant 51875549, 51935012, 51935006]; the Youth Innovation Promotion Association of Chinese Academy of Sciences [2018457]; and the Key Research Program of Frontier Science, Chinese Academy of Sciences [Grant QYZDJ-SSW-SLH056].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhang, Y., Duan, C. et al. Supercritical CO2-assisted microfluidization as ultra-high efficiency strategy for graphene preparation. J Mater Sci 56, 15653–15666 (2021). https://doi.org/10.1007/s10853-021-05903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05903-4

Navigation