Skip to main content

Advertisement

Log in

Structural and functional applications of 3D-printed graphene-based architectures

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on the huge potential of graphene-based composites in electrical, thermal and mechanical applications, which have been widely used in electronics, energy storage and conversion, sensors and structural composites, the assembly and three-dimensional (3D) configuration of graphene nanosheets is an important routine to realize and even optimize its excellent properties. Considering the anisotropy of two-dimensional (2D) graphene and the accuracy of 3D architecture, 3D printing technology stands out in the preparation of periodic and diversified 3D graphene due to its efficient and controllable construction process. Moreover, the interconnected graphene conductive network and lightweight structural regulation can realize the integration of structure and function from low-dimensional to multidimensional. In these circumstances, the structural design and related functional applications of the printed graphene-based architecture are reviewed, and it is important to understand the inks properties, macro-microstructural regulation and corresponding application prospects. Besides, a summary and outlook is prepared in the last part, which points out the application difficulties and future development of 3D-printed graphene-based architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486. https://doi.org/10.1002/adma.201603486

    Article  CAS  Google Scholar 

  2. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  3. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672. https://doi.org/10.1039/c7ta00863e

    Article  CAS  Google Scholar 

  4. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784. https://doi.org/10.1039/c1jm14468e

    Article  CAS  Google Scholar 

  5. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42(10):3408–3418. https://doi.org/10.1007/s10853-007-1688-5

    Article  CAS  Google Scholar 

  6. Gnanasekaran K, Heijmans T, van Bennekom S, Woldhuis H, Wijnia S, de With G, Friedrich H (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28. https://doi.org/10.1016/j.apmt.2017.04.003

    Article  Google Scholar 

  7. Yu W, Zhou H, Li BQ, Ding S (2017) 3D Printing of carbon nanotubes-based microsupercapacitors. ACS Appl Mater Interfaces 9(5):4597–4604. https://doi.org/10.1021/acsami.6b13904

    Article  CAS  Google Scholar 

  8. Meng F, Lu W, Li Q, Byun JH, Oh Y, Chou TW (2015) Graphene-based fibers: a review. Adv Mater 27(35):5113–5131. https://doi.org/10.1002/adma.201501126

    Article  CAS  Google Scholar 

  9. Porwal H, Grasso S, Reece MJ (2014) Review of graphene–ceramic matrix composites. Adv Appl Ceram 112(8):443–454. https://doi.org/10.1179/174367613x13764308970581

    Article  Google Scholar 

  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  11. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  13. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  14. Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97. https://doi.org/10.1016/s1369-7021(12)70044-5

    Article  CAS  Google Scholar 

  15. Suchismita G, Balandin AA, Bao W, et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  16. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470. https://doi.org/10.1021/nn700375n

    Article  CAS  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  19. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  20. Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21(12):1275–1279. https://doi.org/10.1002/adma.200801617

    Article  CAS  Google Scholar 

  21. Zhu C, Han TY, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962. https://doi.org/10.1038/ncomms7962

    Article  CAS  Google Scholar 

  22. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–635. https://doi.org/10.1016/j.carbon.2009.10.003

    Article  CAS  Google Scholar 

  23. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  24. Nguyen BH, Nguyen VH (2016) Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechnol 7(2):023002. https://doi.org/10.1088/2043-6262/7/2/023002

    Article  CAS  Google Scholar 

  25. Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D (2016) 3D printing of graphene aerogels. Small 12(13):1702–1708. https://doi.org/10.1002/smll.201503524

    Article  CAS  Google Scholar 

  26. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22):3163–3168. https://doi.org/10.1002/smll.201100990

    Article  CAS  Google Scholar 

  27. Jiang L, Fan Z (2014) Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4):1922–1945. https://doi.org/10.1039/c3nr04555b

    Article  CAS  Google Scholar 

  28. Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408. https://doi.org/10.1038/srep01408

    Article  CAS  Google Scholar 

  29. Huang SH, Liu P, Mokasdar A, Hou L (2012) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  30. Lozada-Hidalgo M, Zhang S, Hu S, Esfandiar A, Grigorieva IV, Geim AK (2017) Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat Commun 8:15215. https://doi.org/10.1038/ncomms15215

    Article  CAS  Google Scholar 

  31. Chang YC, Liu CH, Liu CH, Zhang S, Marder SR, Narimanov EE, Zhong Z, Norris TB (2016) Realization of mid-infrared graphene hyperbolic metamaterials. Nat Commun 7:10568. https://doi.org/10.1038/ncomms10568

    Article  CAS  Google Scholar 

  32. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  Google Scholar 

  33. Xu X, Li H, Zhang Q, Hu H, Zhao Z, Li J, Li J, Qiao Y, Gogotsi Y (2015) Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9(4):3969–3977. https://doi.org/10.1021/nn507426u

    Article  CAS  Google Scholar 

  34. Zhou Z, Xiao H, Zhang F, Zhang X, Tang Y (2016) Solvothermal synthesis of Na 2 Ti 3 O 7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries. Electrochim Acta 211:430–436. https://doi.org/10.1016/j.electacta.2016.06.036

    Article  CAS  Google Scholar 

  35. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703. https://doi.org/10.1021/nn300082k

    Article  CAS  Google Scholar 

  36. Liu T, Huang M, Li X, Wang C, Gui C-X, Yu Z-Z (2016) Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100:456–464. https://doi.org/10.1016/j.carbon.2016.01.038

    Article  CAS  Google Scholar 

  37. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223. https://doi.org/10.1002/adma.201204530

    Article  CAS  Google Scholar 

  38. Jiang X, Ma Y, Li J, Fan Q, Huang W (2010) Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J Phys Chem C 114:22462–22465. https://doi.org/10.1021/jp108081g

    Article  CAS  Google Scholar 

  39. Sudeep PM, Narayanan TN, Ganesan A, Shaijumon MM, Yang H, Ozden S, Patra PK, Pasquali M, Vajtai R, Ganguli S, Roy AK, Anantharaman MR, Ajayan PM (2013) Covalently interconnected threedimensional graphene oxide solids. ACS Nano 7(8):7034–7040. https://doi.org/10.1021/nn402272u

    Article  CAS  Google Scholar 

  40. Hong J-Y, Bak BM, Wie JJ, Kong J, Park HS (2015) Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv Func Mater 25(7):1053–1062. https://doi.org/10.1002/adfm.201403273

    Article  CAS  Google Scholar 

  41. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  Google Scholar 

  42. Liu Z, Tu Z, Li Y, Yang F, Han S, Yang W, Zhang L, Wang G, Xu C, Gao J (2014) Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition. Mater Lett 122:285–288. https://doi.org/10.1016/j.matlet.2014.02.077

    Article  CAS  Google Scholar 

  43. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560. https://doi.org/10.1002/adma.201204576

    Article  CAS  Google Scholar 

  44. Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241. https://doi.org/10.1038/ncomms2251

    Article  CAS  Google Scholar 

  45. Wu Y, Zhu J, Huang L (2019) A review of three-dimensional graphene-based materials: synthesis and applications to energy conversion/storage and environment. Carbon 143:610–640. https://doi.org/10.1016/j.carbon.2018.11.053

    Article  CAS  Google Scholar 

  46. Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8):3132–3137. https://doi.org/10.1039/c1nr10355e

    Article  CAS  Google Scholar 

  47. Shen J, Hu Y, Li C, Qin C, Shi M, Ye M (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25(11):6122–6128. https://doi.org/10.1021/la900126g

    Article  CAS  Google Scholar 

  48. Liu F, Seo TS (2010) A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Func Mater 20(12):1930–1936. https://doi.org/10.1002/adfm.201000287

    Article  CAS  Google Scholar 

  49. Farahani RD, Dube M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28(28):5794–5821. https://doi.org/10.1002/adma.201506215

    Article  CAS  Google Scholar 

  50. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181. https://doi.org/10.1038/srep11181

    Article  Google Scholar 

  51. Selimis A, Mironov V, Farsari M (2015) Direct laser writing: principles and materials for scaffold 3D printing. Microelectron Eng 132:83–89. https://doi.org/10.1016/j.mee.2014.10.001

    Article  CAS  Google Scholar 

  52. Campbell TA, Ivanova OS (2013) 3D printing of multifunctional nanocomposites. Nano Today 8(2):119–120. https://doi.org/10.1016/j.nantod.2012.12.002

    Article  CAS  Google Scholar 

  53. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  54. Zhu C, Liu T, Qian F, Han TY, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16(6):3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965

    Article  CAS  Google Scholar 

  55. Sha J, Li Y, Salvatierra RV, Wang T, Dong P (2017) Three-dimensional printed graphene foams. ACS Nano. https://doi.org/10.1021/acsnano.7b01987

    Article  Google Scholar 

  56. Arao Y, Mori F, Kubouchi M (2017) Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation. Carbon 118:18–24. https://doi.org/10.1016/j.carbon.2017.03.002

    Article  CAS  Google Scholar 

  57. He W, Zhang W, Li Y, Jing X (2012) A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synth Met 162(13–14):1107–1113. https://doi.org/10.1016/j.synthmet.2012.04.027

    Article  CAS  Google Scholar 

  58. Zhang X, Coleman AC, Katsonis N, Browne WR, van Wees BJ, Feringa BL (2010) Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun (Camb) 46(40):7539–7541. https://doi.org/10.1039/c0cc02688c

    Article  CAS  Google Scholar 

  59. You X, Feng Q, Yang J, Huang K, Hu J, Dong S (2019) Preparation of high concentration graphene dispersion with low boiling point solvents. J Nanoparticle Res 21(19):1–11. https://doi.org/10.1007/s11051-019-4459-8

    Article  CAS  Google Scholar 

  60. Chen G, Wu D, Weng W, Wu C (2003) Exfoliation of graphite flake and its nanocomposites. Carbon 41(3):619–621. https://doi.org/10.1016/s0008-6223(02)00409-8

    Article  CAS  Google Scholar 

  61. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539. https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  62. Salavagione HJ, Sherwood J, De bruyn M, Budarin VL, Ellis GJ, Clark JH, Shuttleworth PS (2017) Identification of high performance solvents for the sustainable processing of graphene. Green Chem 19(11):2550–2560. https://doi.org/10.1039/c7gc00112f

    Article  CAS  Google Scholar 

  63. Liu S, Wang L, Tian J, Luo Y, Zhang X, Sun X (2011) Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. J Colloid Interface Sci 363(2):615–619. https://doi.org/10.1016/j.jcis.2011.07.083

    Article  CAS  Google Scholar 

  64. Su Y, Zhitomirsky I (2013) Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent. Colloids Surf, A 436:97–103. https://doi.org/10.1016/j.colsurfa.2013.06.024

    Article  CAS  Google Scholar 

  65. Huang K, Yang J, Dong S, Feng Q, Zhang X, Ding Y, Hu J (2018) Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon 130:1–10. https://doi.org/10.1016/j.carbon.2017.12.120

    Article  CAS  Google Scholar 

  66. Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162. https://doi.org/10.1021/nn1005304

    Article  CAS  Google Scholar 

  67. Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5):1653–1662. https://doi.org/10.1016/j.carbon.2010.12.049

    Article  CAS  Google Scholar 

  68. Parviz D, Das S, Ahmed HST, Irin F, Bhattacharia S, Green MJ (2012) Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6(10):8857–8867. https://doi.org/10.1021/nn302784m

    Article  CAS  Google Scholar 

  69. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2008) Liquid phase production of graphene by exfoliation of graphite in surfactant water solutions. J Am Chem Soc 131:3611–3620. https://doi.org/10.1021/ja807449u

    Article  CAS  Google Scholar 

  70. Zhou X, Wu T, Ding K, Hu B, Hou M, Han B (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun (Camb) 46(3):386–388. https://doi.org/10.1039/b914763b

    Article  CAS  Google Scholar 

  71. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158. https://doi.org/10.1039/b512799h

    Article  CAS  Google Scholar 

  72. Yuk H, Zhao X (2018) A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater. https://doi.org/10.1002/adma.201704028

    Article  Google Scholar 

  73. Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD (2016) 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16(10):1812–1820. https://doi.org/10.1039/c6lc00198j

    Article  CAS  Google Scholar 

  74. An BW, Kim K, Lee H, Kim SY, Shim Y, Lee DY, Song JY, Park JU (2015) High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv Mater 27(29):4322–4328. https://doi.org/10.1002/adma.201502092

    Article  CAS  Google Scholar 

  75. Shin SR, Farzad R, Tamayol A, Manoharan V, Mostafalu P, Zhang YS, Akbari M, Jung SM, Kim D, Comotto M, Annabi N, Al-Hazmi FE, Dokmeci MR, Khademhosseini A (2016) A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv Mater 28(17):3280–3289. https://doi.org/10.1002/adma.201506420

    Article  CAS  Google Scholar 

  76. Hardin JO, Ober TJ, Valentine AD, Lewis JA (2015) Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater 27(21):3279–3284. https://doi.org/10.1002/adma.201500222

    Article  CAS  Google Scholar 

  77. Smith PT, Basu A, Saha A, Nelson A (2018) Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing. Polymer 152:42–50. https://doi.org/10.1016/j.polymer.2018.01.070

    Article  CAS  Google Scholar 

  78. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T, Wang Z, Xu Y, Hu L (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28(13):2587–2594. https://doi.org/10.1002/adma.201505391

    Article  CAS  Google Scholar 

  79. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935. https://doi.org/10.1002/adma.201401804

    Article  CAS  Google Scholar 

  80. Zhong J, Zhou G-X, He P-G, Yang Z-H, Jia D-C (2017) 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 117:421–426. https://doi.org/10.1016/j.carbon.2017.02.102

    Article  CAS  Google Scholar 

  81. Smay JE, Cesarano J, Lewis JA (2002) Colloidal Inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437. https://doi.org/10.1021/la0257135

    Article  CAS  Google Scholar 

  82. Wang Z, Gao W, Zhang Q, Zheng K, Xu J, Xu W, Shang E, Jiang J, Zhang J, Liu Y (2019) 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors. ACS Appl Mater Interfaces 11(1):1344–1352. https://doi.org/10.1021/acsami.8b16139

    Article  CAS  Google Scholar 

  83. Huang K, Dong S, Yang J, Yan J, Xue Y, You X, Hu J, Gao L, Zhang X, Ding Y (2019) Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon 143:63–72. https://doi.org/10.1016/j.carbon.2018.11.008

    Article  CAS  Google Scholar 

  84. Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C (2016) Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network. ACS Appl Mater Interfaces 8(3):2187–2192. https://doi.org/10.1021/acsami.5b10791

    Article  CAS  Google Scholar 

  85. Wei H, Li K, Liu WG, Meng H, Zhang PX, Yan CY (2017) 3D printing of free-standing stretchable electrodes with tunable structure and stretchability. Adv Eng Mater 19:1700341. https://doi.org/10.1002/adem.201700341

    Article  CAS  Google Scholar 

  86. Liu S, Wu X, Zhang D, Guo C, Wang P, Hu W, Li X, Zhou X, Xu H, Luo C, Zhang J, Chu J (2017) Ultrafast dynamic pressure sensors based on graphene hybrid structure. ACS Appl Mater Interfaces 9(28):24148–24154. https://doi.org/10.1021/acsami.7b07311

    Article  CAS  Google Scholar 

  87. de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  CAS  Google Scholar 

  88. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  Google Scholar 

  89. Kim JH, Chang WS, Kim D, Yang JR, Han JT, Lee GW, Kim JT, Seol SK (2015) 3D printing of reduced graphene oxide nanowires. Adv Mater 27(1):157–161. https://doi.org/10.1002/adma.201404380

    Article  CAS  Google Scholar 

  90. Naficy S, Jalili R, Aboutalebi SH, Gorkin Iii RA, Konstantinov K, Innis PC, Spinks GM, Poulin P, Wallace GG (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331. https://doi.org/10.1039/c3mh00144j

    Article  CAS  Google Scholar 

  91. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  92. Yao Y, Fu KK, Yan C, Dai J, Chen Y, Wang Y, Zhang B, Hitz E, Hu L (2016) Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5):5272–5279. https://doi.org/10.1021/acsnano.6b01059

    Article  CAS  Google Scholar 

  93. Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14(18):1279–1283. https://doi.org/10.1002/1521-4095(20020916)14:18

    Article  CAS  Google Scholar 

  94. Heller BP, Smith DE, Jack DA (2016) Effects of extrudate swell and nozzle geometry on fiber orientation in fused filament fabrication nozzle flow. Additive Manufacturing 12:252–264. https://doi.org/10.1016/j.addma.2016.06.005

    Article  CAS  Google Scholar 

  95. Trebbin M, Steinhauser D, Perlich J, Buffet A, Roth SV, Zimmermann W, Thiele J, Forster S (2013) Anisotropic particles align perpendicular to the flow direction in narrow microchannels. Proc Natl Acad Sci U S A 110(17):6706–6711. https://doi.org/10.1073/pnas.1219340110

    Article  Google Scholar 

  96. Zhu C, Liu T, Qian F, Chen W, Chandrasekaran S, Yao B, Song Y, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2017) 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15:107–120. https://doi.org/10.1016/j.nantod.2017.06.007

    Article  CAS  Google Scholar 

  97. Chandrasekaran S, Campbell PG, Baumann TF, Worsley MA (2017) Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J Mater Res 32(22):4166–4185. https://doi.org/10.1557/jmr.2017.411

    Article  CAS  Google Scholar 

  98. Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping 12(3):261–276. https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  99. Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  CAS  Google Scholar 

  100. Guo F, Zheng X, Liang C, Jiang Y, Xu Z, Jiao Z, Liu Y, Wang HT, Sun H, Ma L, Gao W, Greiner A, Agarwal S, Gao C (2019) Millisecond response of shape memory polymer nanocomposite aerogel powered by stretchable graphene framework. ACS Nano 13(5):5549–5558. https://doi.org/10.1021/acsnano.9b00428

    Article  CAS  Google Scholar 

  101. Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L (2017) 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv Mater. https://doi.org/10.1002/adma.201700981

    Article  Google Scholar 

  102. An B, Ma Y, Li W, Su M, Li F, Song Y (2016) Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chem Commun (Camb) 52(73):10948–10951. https://doi.org/10.1039/c6cc05910d

    Article  CAS  Google Scholar 

  103. Zhang H, Xie A, Shen Y, Qiu L, Tian X (2012) Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors. Phys Chem Chem Phys 14(37):12757–12763. https://doi.org/10.1039/c2cp41561e

    Article  CAS  Google Scholar 

  104. Román-Manso B, Figueiredo FM, Achiaga B, Barea R, Pérez-Coll D, Morelos-Gómez A, Terrones M, Osendi MI, Belmonte M, Miranzo P (2016) Electrically functional 3D-architectured graphene/SiC composites. Carbon 100:318–328. https://doi.org/10.1016/j.carbon.2015.12.103

    Article  CAS  Google Scholar 

  105. Jakus AE, Shah RN (2016) Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.35684

    Article  Google Scholar 

  106. Middelkoop V, Slater T, Florea M, Neaţu F, Danaci S, Onyenkeadi V, Boonen K, Saha B, Baragau I-A, Kellici S (2019) Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production. J Clean Prod 214:606–614. https://doi.org/10.1016/j.jclepro.2018.12.274

    Article  CAS  Google Scholar 

  107. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204. https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  108. Au AK, Huynh W, Horowitz LF, Folch A (2016) 3D-Printed Microfluidics. Angew Chem Int Ed Engl 55(12):3862–3881. https://doi.org/10.1002/anie.201504382

    Article  CAS  Google Scholar 

  109. Uz M, Lentner M, Jackson K, Donta M, Jung J, Hondred JA, Mach E, Claussen JC, Mallapragada SK (2020) Fabrication of 2D and 3D High-resolution binder-free graphene circuits using a microfluidic approach for sensor applications. ACS Appl Mater Interfaces 12:13529–13539. https://doi.org/10.1021/acsami.9b23460

    Article  CAS  Google Scholar 

  110. de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213. https://doi.org/10.1002/adma.200300385

    Article  CAS  Google Scholar 

  111. Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26(40):6950–6958. https://doi.org/10.1002/adma.201305416

    Article  CAS  Google Scholar 

  112. Dai W, Guo H, Gao B, Ruan M, Xu L, Wu J, Brett Kirk T, Xu J, Ma D, Xue W (2019) Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability. Chem Eng J 356:934–949. https://doi.org/10.1016/j.cej.2018.09.078

    Article  CAS  Google Scholar 

  113. Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885. https://doi.org/10.1016/j.jpowsour.2011.02.022

    Article  CAS  Google Scholar 

  114. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674. https://doi.org/10.1039/c0ee00295j

    Article  CAS  Google Scholar 

  115. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci. https://doi.org/10.1039/c0ee00683a

    Article  Google Scholar 

  116. Han S, Wu D, Li S, Zhang F, Feng X (2014) Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 26(6):849–864. https://doi.org/10.1002/adma.201303115

    Article  CAS  Google Scholar 

  117. Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci. https://doi.org/10.1039/c3ee43385d

    Article  Google Scholar 

  118. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55(12):3909–3914. https://doi.org/10.1016/j.electacta.2010.02.025

    Article  CAS  Google Scholar 

  119. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471. https://doi.org/10.1021/nn2006249

    Article  CAS  Google Scholar 

  120. Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282. https://doi.org/10.1021/nl800957b

    Article  CAS  Google Scholar 

  121. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053. https://doi.org/10.1016/j.carbon.2009.03.053

    Article  CAS  Google Scholar 

  122. Yang J, Wang J, Wang D, Li X, Geng D, Liang G, Gauthier M, Li R, Sun X (2012) 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources 208:340–344. https://doi.org/10.1016/j.jpowsour.2012.02.032

    Article  CAS  Google Scholar 

  123. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem. https://doi.org/10.1039/b914650d

    Article  Google Scholar 

  124. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543. https://doi.org/10.1002/adma.201301036

    Article  CAS  Google Scholar 

  125. Lung-Hao Hu B, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO(4) cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687. https://doi.org/10.1038/ncomms2705

    Article  CAS  Google Scholar 

  126. Wei W, Lv W, Wu M-B, Su F-Y, He Y-B, Li B, Kang F, Yang Q-H (2013) The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 57:530–533. https://doi.org/10.1016/j.carbon.2013.01.070

    Article  CAS  Google Scholar 

  127. Lacey SD, Kirsch DJ, Li Y, Morgenstern JT, Zarket BC, Yao Y, Dai J, Garcia LQ, Liu B, Gao T, Xu S, Raghavan SR, Connell JW, Lin Y, Hu L (2018) Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv Mater 30(12):1705651. https://doi.org/10.1002/adma.201705651

    Article  CAS  Google Scholar 

  128. Qiao Y, Liu Y, Chen C, Xie H, Yao Y, He S, Ping W, Liu B, Hu L (2018) 3D-Printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv Funct Mater 28(51):1805899. https://doi.org/10.1002/adfm.201805899

    Article  CAS  Google Scholar 

  129. Shen K, Mei H, Li B, Ding J, Yang S (2018) 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv Energy Mater 8(4):1701527. https://doi.org/10.1002/aenm.201701527

    Article  CAS  Google Scholar 

  130. Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Func Mater 23(40):4996–5008. https://doi.org/10.1002/adfm.201203547

    Article  CAS  Google Scholar 

  131. Lightcap IV, Kamat PV (2013) Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc Chem Res 46(10):2235–2243. https://doi.org/10.1021/ar300248f

    Article  CAS  Google Scholar 

  132. Hu YH, Wang H, Hu B (2010) Thinnest two-dimensional nanomaterial-graphene for solar energy. Chemsuschem 3(7):782–796. https://doi.org/10.1002/cssc.201000061

    Article  CAS  Google Scholar 

  133. Yang Y, Zhao R, Zhang T, Zhao K, Xiao P, Ma Y, Ajayan PM, Shi G, Chen Y (2018) Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1):829–835. https://doi.org/10.1021/acsnano.7b08196

    Article  CAS  Google Scholar 

  134. Min P, Liu J, Li X, An F, Liu P, Shen Y, Koratkar N, Yu Z-Z (2018) Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv Funct Mater. https://doi.org/10.1002/adfm.201805365

    Article  Google Scholar 

  135. Fu Y, Wang G, Mei T, Li J, Wang J, Wang X (2017) Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sust Chem Eng 5(6):4665–4671. https://doi.org/10.1021/acssuschemeng.6b03207

    Article  CAS  Google Scholar 

  136. Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz EM, Yang B, Hu L (2017) Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 41:201–209. https://doi.org/10.1016/j.nanoen.2017.09.034

    Article  CAS  Google Scholar 

  137. Zhang P, Liao Q, Yao H, Cheng H, Huang Y, Yang C, Jiang L, Qu L (2018) Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J Mater Chem A 6(31):15303–15309. https://doi.org/10.1039/c8ta05412f

    Article  CAS  Google Scholar 

  138. He P, Tang X, Chen L, Xie P, He L, Zhou H, Zhang D, Fan T (2018) Patterned carbon nitride-based hybrid aerogel membranes via 3D printing for broadband solar wastewater remediation. Adv Funct Mater. https://doi.org/10.1002/adfm.201801121

    Article  Google Scholar 

  139. Beliatis MJ, Helgesen M, García-Valverde R, Corazza M, Roth B, Carlé JE, Jørgensen M, Krebs FC, Gevorgyan SA (2016) Slot-die-coated V2O5as hole transport layer for flexible organic solar cells and optoelectronic devices. Adv Eng Mater 18(8):1494–1503. https://doi.org/10.1002/adem.201600119

    Article  CAS  Google Scholar 

  140. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868. https://doi.org/10.1021/nl102661q

    Article  CAS  Google Scholar 

  141. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107. https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  142. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem. https://doi.org/10.1039/c000417k

    Article  Google Scholar 

  143. Beidaghi M, Wang C (2012) Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Func Mater 22(21):4501–4510. https://doi.org/10.1002/adfm.201201292

    Article  CAS  Google Scholar 

  144. Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng H-M, Yang Q-H (2016) Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci 9(10):3135–3142. https://doi.org/10.1039/c6ee00941g

    Article  CAS  Google Scholar 

  145. Zhang J, Jiang J, Li H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci. https://doi.org/10.1039/c1ee01354h

    Article  Google Scholar 

  146. Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett. DOI 10(1063/1):3455879

    Google Scholar 

  147. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3212. https://doi.org/10.1021/nn300097q

    Article  CAS  Google Scholar 

  148. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  Google Scholar 

  149. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905. https://doi.org/10.1021/nn304833s

    Article  CAS  Google Scholar 

  150. Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7(10):9366–9374. https://doi.org/10.1021/nn4040734

    Article  CAS  Google Scholar 

  151. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chemistry 20(43):13838–13852. https://doi.org/10.1002/chem.201403649

    Article  CAS  Google Scholar 

  152. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633. https://doi.org/10.1021/nl400760a

    Article  CAS  Google Scholar 

  153. Kang YJ, Chung H, Han C-H, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology. https://doi.org/10.1088/0957-4484/23/28/289501

    Article  Google Scholar 

  154. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5):4042–4049. https://doi.org/10.1021/nn4000836

    Article  CAS  Google Scholar 

  155. Shen K, Ding J, Yang S (2018) 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater. https://doi.org/10.1002/aenm.201800408

    Article  Google Scholar 

  156. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. DOI 10(1063/1):2907977

    Google Scholar 

  157. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281. https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  158. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558. https://doi.org/10.1038/nmat2753

    Article  CAS  Google Scholar 

  159. Nguyen N, Park JG, Zhang S, Liang R (2018) Recent advances on 3D printing technique for thermal-related applications. Adv Eng Mater. https://doi.org/10.1002/adem.201700876

    Article  Google Scholar 

  160. Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, Zhang B, Chen Y, Tao S (2017) 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Mater Des 126:135–140. https://doi.org/10.1016/j.matdes.2017.04.047

    Article  CAS  Google Scholar 

  161. Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11(11):11513–11520. https://doi.org/10.1021/acsnano.7b06295

    Article  CAS  Google Scholar 

  162. Nguyen N, Zhang S, Oluwalowo A, Park JG, Yao K, Liang R (2018) High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets. ACS Appl Mater Interfaces 10(32):27171–27177. https://doi.org/10.1021/acsami.8b07556

    Article  CAS  Google Scholar 

  163. Akinwande D, Kireev D (2019) Graphene sees the light in wearable sensors. Nature 576(7786):220–221. https://doi.org/10.1038/d41586-019-03483-7

    Article  CAS  Google Scholar 

  164. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355. https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  165. Qin Z, Jung GS, Kang MJ, Buehler MJ (2017) The mechanics and design of a lightweight three-dimensional graphene assembly. Sci Adv. https://doi.org/10.1126/sciadv.1601536

    Article  Google Scholar 

  166. You X, Yang J, Wang M, Zhou H, Gao L, Hu J, Zhang X, Dong S (2020) Novel graphene planar architecture with ultrahigh stretchability and sensitivity. ACS Appl Mater Interfaces 12(16):18913–18923. https://doi.org/10.1021/acsami.0c02692

    Article  CAS  Google Scholar 

  167. He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci. https://doi.org/10.1039/c2sc20205k

    Article  Google Scholar 

  168. Yan C, Wang J, Kang W, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027. https://doi.org/10.1002/adma.201304742

    Article  CAS  Google Scholar 

  169. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036. https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  170. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A. https://doi.org/10.1039/c3ta11774j

    Article  Google Scholar 

  171. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sens Actuators B Chem 218:160–183. https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  172. Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 221:1170–1181. https://doi.org/10.1016/j.snb.2015.07.070

    Article  CAS  Google Scholar 

  173. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B Chem 173:1–21. https://doi.org/10.1016/j.snb.2012.07.092

    Article  CAS  Google Scholar 

  174. Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502. https://doi.org/10.1088/0957-4484/20/44/445502

    Article  CAS  Google Scholar 

  175. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112:13442–13446. https://doi.org/10.1021/jp8021024

    Article  CAS  Google Scholar 

  176. Wu J, Tao K, Guo Y, Li Z, Wang X, Luo Z, Feng S, Du C, Chen D, Miao J, Norford LK (2017) A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Advanced Science 4(3):1600319. https://doi.org/10.1002/advs.201600319

    Article  CAS  Google Scholar 

  177. Yun YJ, Hong WG, Choi NJ, Park HJ, Moon SE, Kim BH, Song KB, Jun Y, Lee HK (2014) A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors. Nanoscale 6(12):6511–6514. https://doi.org/10.1039/c4nr00332b

    Article  CAS  Google Scholar 

  178. You X, Yang J, Wang M, Wang H, Gao L, Dong S (2020) Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity. J Mater Sci Technol 58:16–23. https://doi.org/10.1016/j.jmst.2020.03.055

    Article  Google Scholar 

  179. Loh HA, Graves AR, Stinespring CD, Sierros KA (2019) Direct ink writing of graphene-based solutions for gas sensing. ACS Appl Nano Mater 2(7):4104–4112. https://doi.org/10.1021/acsanm.9b00572

    Article  CAS  Google Scholar 

  180. Wu T, Gray E, Chen B (2018) A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors. J Mater Chem C 6(23):6200–6207. https://doi.org/10.1039/c8tc01092g

    Article  CAS  Google Scholar 

  181. Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Func Mater 24(29):4666–4670. https://doi.org/10.1002/adfm.201400379

    Article  CAS  Google Scholar 

  182. Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242. https://doi.org/10.1016/j.carbon.2012.08.048

    Article  CAS  Google Scholar 

  183. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686. https://doi.org/10.1039/c1cs15078b

    Article  CAS  Google Scholar 

  184. Gul JZ, Sajid M, Choi KH (2019) 3D printed highly flexible strain sensor based on TPU–graphene composite for feedback from high speed robotic applications. J Mater Chem C 7(16):4692–4701. https://doi.org/10.1039/c8tc03423k

    Article  CAS  Google Scholar 

  185. Kim JY, Ji S, Jung S, Ryu BH, Kim HS, Lee SS, Choi Y, Jeong S (2017) 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors. Nanoscale 9(31):11035–11046. https://doi.org/10.1039/c7nr01865g

    Article  CAS  Google Scholar 

  186. Yavari F, Koratkar N (2012) Graphene-Based Chemical Sensors. J Phys Chem Lett 3(13):1746–1753. https://doi.org/10.1021/jz300358t

    Article  CAS  Google Scholar 

  187. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306. https://doi.org/10.1021/nn800593m

    Article  CAS  Google Scholar 

  188. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307. https://doi.org/10.1039/c1cs15270j

    Article  CAS  Google Scholar 

  189. Moya A, Gabriel G, Villa R, Javier del Campo F (2017) Inkjet-printed electrochemical sensors. Curr Opin Electrochem 3(1):29–39. https://doi.org/10.1016/j.coelec.2017.05.003

    Article  CAS  Google Scholar 

  190. Huang L, Huang Y, Liang J, Wan X, Chen Y (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4(7):675–684. https://doi.org/10.1007/s12274-011-0123-z

    Article  CAS  Google Scholar 

  191. González C, Vilatela JJ, Molina-Aldareguía JM, Lopes CS, Llorca J (2017) Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci 89:194–251. https://doi.org/10.1016/j.pmatsci.2017.04.005

    Article  CAS  Google Scholar 

  192. Cox B, Yang Q (2006) In quest of virtual tests for structural composites. Science 314(5802):1102. https://doi.org/10.1126/science.1131624

    Article  CAS  Google Scholar 

  193. Diamanti K, Soutis C (2010) Structural health monitoring techniques for aircraft composite structures. Prog Aerosp Sci 46(8):342–352. https://doi.org/10.1016/j.paerosci.2010.05.001

    Article  Google Scholar 

  194. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K (2018) Impact behaviour of hybrid composites for structural applications: a review. Compos B Eng 133:112–121. https://doi.org/10.1016/j.compositesb.2017.09.008

    Article  CAS  Google Scholar 

  195. Miranzo P, Belmonte M, Osendi MI (2017) From bulk to cellular structures: a review on ceramic/graphene filler composites. J Eur Ceram Soc 37:3649–3672. https://doi.org/10.1016/j.jeurceramsoc.2017.03.016

    Article  CAS  Google Scholar 

  196. Belmonte M, Nistal A, Boutbien P, Benito Román-Manso MIO, Miranzo P (2016) Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers. Scripta Mater 113:127–130. https://doi.org/10.1016/j.scriptamat.2015.10.023

    Article  CAS  Google Scholar 

  197. de la Osa G, Pérez-Coll D, Miranzo P, Osendi MI, Belmonte M (2016) Printing of graphene nanoplatelets into highly electrically conductive three-dimensional porous macrostructures. Chem Mater 28(17):6321–6328. https://doi.org/10.1021/acs.chemmater.6b02662

    Article  CAS  Google Scholar 

  198. Wang Y, Shan JW, Weng GJ (2015) Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J Appl Phys 10(1063/1):4928293

    Google Scholar 

  199. Pierin G, Grotta C, Colombo P, Mattevi C (2016) Direct ink writing of micrometric SiOC ceramic structures using a preceramic polymer. J Eur Ceram Soc 36(7):1589–1594. https://doi.org/10.1016/j.jeurceramsoc.2016.01.047

    Article  CAS  Google Scholar 

  200. You X, Yang J, Huang K, Wang M, Zhang X, Dong S (2019) Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon 155:215–222. https://doi.org/10.1016/j.carbon.2019.08.080

    Article  CAS  Google Scholar 

  201. Hashemi R, Weng GJ (2016) A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96:474–490. https://doi.org/10.1016/j.carbon.2015.09.103

    Article  CAS  Google Scholar 

  202. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:804213. https://doi.org/10.1155/2015/804213

    Article  Google Scholar 

  203. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  Google Scholar 

  204. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105(Pt B):255–274. https://doi.org/10.1016/j.addr.2016.03.007

    Article  CAS  Google Scholar 

  205. Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yuksekkaya M, Wan KT, Nikkhah M, Dokmeci MR, Tang XS, Khademhosseini A (2016) Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27):3677–3689. https://doi.org/10.1002/smll.201600178

    Article  CAS  Google Scholar 

  206. Yu P, Bao RY, Shi XJ, Yang W, Yang MB (2017) Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr Polym 155:507–515. https://doi.org/10.1016/j.carbpol.2016.09.001

    Article  CAS  Google Scholar 

  207. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285–4290. https://doi.org/10.1002/adma.201200846

    Article  CAS  Google Scholar 

  208. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung HJ (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176. https://doi.org/10.1039/c3nr00803g

    Article  CAS  Google Scholar 

  209. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648. https://doi.org/10.1021/acsnano.5b01179

    Article  CAS  Google Scholar 

  210. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC (2017) 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9(4):4015–4023. https://doi.org/10.1021/acsami.6b11793

    Article  CAS  Google Scholar 

  211. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci. https://doi.org/10.1039/c2ee22238h

    Article  Google Scholar 

  212. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40(2):948–979. https://doi.org/10.1016/j.ijhydene.2014.10.129

    Article  CAS  Google Scholar 

  213. He K, Chen G, Zeng G, Chen A, Huang Z, Shi J, Huang T, Peng M, Hu L (2018) Three-dimensional graphene supported catalysts for organic dyes degradation. Appl Catal B 228:19–28. https://doi.org/10.1016/j.apcatb.2018.01.061

    Article  CAS  Google Scholar 

  214. Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11):9764–9776. https://doi.org/10.1021/nn303275d

    Article  CAS  Google Scholar 

  215. Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, Zhang B (2013) High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction. Sci Rep. https://doi.org/10.1038/srep01765

    Article  Google Scholar 

  216. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28(43):9532–9538. https://doi.org/10.1002/adma.201602912

    Article  CAS  Google Scholar 

  217. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115. https://doi.org/10.1002/adma.201003753

    Article  CAS  Google Scholar 

  218. An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv. https://doi.org/10.1039/c1ra00382h

    Article  Google Scholar 

  219. Azuaje J, Rama A, Mallo-Abreu A, Boado MG, Majellaro M, Tubío CR, Prieto R, García-Mera X, Guitián F, Sotelo E, Gil A (2021) Catalytic performance of a metal-free graphene oxide-Al2O3 composite assembled by 3D printing. J Eur Ceram Soc 41(2):1399–1406. https://doi.org/10.1016/j.jeurceramsoc.2020.10.010

    Article  CAS  Google Scholar 

  220. Wu S, Ladani RB, Zhang J, Ghorbani K, Zhang X, Mouritz AP, Kinloch AJ, Wang CH (2016) Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl Mater Interfaces 8(37):24853–24861. https://doi.org/10.1021/acsami.6b06012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was sponsored by National Natural Science Foundation of China (No. 51772310), Chinese Academy of Sciences Key Research Program of Frontier Sciences (QYZDY-SSWJSC031) and Key Deployment Projects of the Chinese Academy of Sciences (ZDRW-CN-2019-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinshan Yang or Shaoming Dong.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Yang, J. & Dong, S. Structural and functional applications of 3D-printed graphene-based architectures. J Mater Sci 56, 9007–9046 (2021). https://doi.org/10.1007/s10853-021-05899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05899-x

Navigation