Skip to main content

Advertisement

Log in

Developing porous organic polymers as precursors of nitrogen-decorated micro-mesoporous carbons for efficient capture and conversion of carbon dioxide

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous carbons with large surface areas, abundant mesopores and weak base sites are promising materials for the capture and conversion of CO2. However, it is still challenging to obtain such porous carbons in a facile and template-free way. Herein, nitrogen-decorated micro-mesoporous carbons were synthesized by direct carbonization of porous organic polymers, which were developed through alkylation-induced hyper-crosslink of rigid organic bases without the use of any templates. The synthesized carbons have ultrahigh surface areas of 2366–3580 m2/g, total pore volumes of 1.74–3.38 cm3/g and N contents of 1.50–3.24 wt%. As a consequence, the synthesized carbons enable highly efficient and selective adsorption of CO2 from CO2/N2 mixed gas, with the CO2 capacities of 1.50–2.03 mmol/g at 0 °C and 15 kPa, and IAST selectivities of 69–78 for CO2/N2 (0.15/0.85 vol) mixed gas at 0 °C and 100 kPa. After loaded with metal salts, the synthesized carbons also exhibit high activities for the catalytic conversion of CO2, with the TOFs of > 600 h−1 for cycloaddition of CO2 with propylene oxide at 100 °C and 1.0 MPa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. IPCC, AR5 Synthesis Report: Climate Change 2014, https://www.ipcc.ch/report/ar5/syr/.

  2. Geden O (2016) The Paris Agreement and the inherent inconsistency of climate policymaking. Wires Clim Change 7:790–797

    Article  Google Scholar 

  3. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  4. Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    Article  CAS  Google Scholar 

  5. Chen FF, Huang K, Fan JP, Tao DJ (2018) Chemical solvent in chemical solvent: A class of hybrid materials for effective capture of CO2. AIChE J 64:632–639

    Article  CAS  Google Scholar 

  6. Liu F, Huang K, Jiang L (2018) Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids. AIChE J 64:3671–3680

    Article  CAS  Google Scholar 

  7. Zhang JB, Peng HL, Liu Y, Tao DJ, Wu PK, Fan JP, Huang K (2019) Highly efficient CO2 capture by polyethyleneimine plus 1-ethyl-3-methylimidazolium acetate mixed absorbents. ACS Sustain Chem Eng 7:9369–9377

    Article  CAS  Google Scholar 

  8. Huang K, Zhang JY, Liu F, Dai S (2018) Synthesis of porous polymeric catalysts for the conversion of carbon dioxide. ACS Catal 8:9079–9102

    Article  CAS  Google Scholar 

  9. Niu D, Wu Z, Zhang L, Du R, Xu H, Zhang X (2016) Synthesis of cyclic carbonates from epoxides and CO2 in acetonitrile via the synergistic action of BMIMBr and electrogenerated magnesium. Chin J Catal 37:1076–1080

    Article  CAS  Google Scholar 

  10. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew Chem Int Ed 47:1127–1129

    Article  CAS  Google Scholar 

  11. Shi F, Deng Y, SiMa T, Peng J, Gu Y, Qiao B (2003) Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed 42:3257–3260

    Article  CAS  Google Scholar 

  12. Bi QY, Lin JD, Liu YM, Xie SH, He HY, Cao Y (2014) Partially reduced iridium oxide clusters dispersed on titania as efficient catalysts for facile synthesis of dimethylformamide from CO2, H2 and dimethylamine. Chem Commun 50:9138–9140

    Article  CAS  Google Scholar 

  13. Srivastava R, Srinivas D, Ratnasamy P (2005) Zeolite-based organic–inorganic hybrid catalysts for phosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mild conditions utilizing CO2. Appl Catal A Gen 289:128–134

    Article  CAS  Google Scholar 

  14. Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X (2007) Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem 9:169–172

    Article  CAS  Google Scholar 

  15. Ma X, Zou B, Cao M, Chen SL, Hu C (2014) Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion. J Mater Chem A 2:18360–18366

    Article  CAS  Google Scholar 

  16. Molla RA, Iqubal A, Ghosh K, Islam M (2016) Nitrogen-doped mesoporous carbon material (N-GMC) as a highly efficient catalyst for carbon dioxide fixation reaction with epoxides under metal-free condition. ChemistrySelect 1:3100–3107

    Article  CAS  Google Scholar 

  17. Huang K, Liu F, Fan JP, Dai S (2018) Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide. ACS Appl Mater Interfaces 10:36961–36968

    Article  CAS  Google Scholar 

  18. Liu F, Huang K, Wu Q, Dai S (2017) Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2. Adv Mater 29:1700445

    Article  Google Scholar 

  19. Wu Q, Huang K, Liu F, Zhang P, Jiang L (2017) Pyridine-functionalized and metallized meso-macroporous polymers for highly selective capture and catalytic conversion of CO2 into cyclic carbonates. Ind Eng Chem Res 56:15008–15016

    Article  CAS  Google Scholar 

  20. Huang K, Liu F, Jiang L, Dai S (2017) Aqueous and template-free synthesis of meso-macroporous polymers for highly selective capture and conversion of carbon dioxide. Chemsuschem 10:4144–4149

    Article  CAS  Google Scholar 

  21. Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK (2014) A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J Am Chem Soc 136:15861–15864

    Article  CAS  Google Scholar 

  22. Li PZ, Wang XJ, Liu J, Lim JS, Zou R, Zhao Y (2016) A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J Am Chem Soc 138:2142–2145

    Article  CAS  Google Scholar 

  23. Gao WY, Wu H, Leng K, Sun Y, Ma S (2016) Inserting CO2 into aryl C–H bonds of metal-organic frameworks: CO2 utilization for direct heterogeneous C–H activation. Angew Chem Int Ed 55:5472–5476

    Article  CAS  Google Scholar 

  24. Peng HL, Zhang JB, Zhang JY, Zhong FY, Wu PK, Huang K, Fan JP, Liu F (2019) Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture. Chem Eng J 359:1159–1165

    Article  CAS  Google Scholar 

  25. Huang K, Li ZL, Zhang JY, Tao DJ, Liu F, Dai S (2019) Simultaneous activation and N-doping of hydrothermal carbons by NaNH2: An effective approach to CO2 adsorbents. J CO2 Util 33:405–412

    Article  CAS  Google Scholar 

  26. Zhan Y, Han Q, Pan S, Kan X, Mi J, Liu F, Cao Y, Au C, Jiang L (2019) Biomass-derived hierarchically porous carbons abundantly decorated with nitrogen sites for efficient CO2 catalytic utilization. Ind Eng Chem Res 58:7980–7988

    Article  CAS  Google Scholar 

  27. Zhang JY, Zhang JB, Li M, Wu Z, Dai S, Huang K (2020) Solvent-free and one-pot synthesis of ultramicroporous carbons with ultrahigh nitrogen contents for sulfur dioxide capture. Chem Eng J 391:123579

    Article  CAS  Google Scholar 

  28. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  29. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470

    Article  CAS  Google Scholar 

  30. Gao S, Geng K, Liu H, Wei X, Zhang M, Wang P, Wang J (2015) Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ Sci 8:221–229

    Article  CAS  Google Scholar 

  31. Lee JM, Briggs ME, Hasell T, Cooper AI (2016) Hyperporous carbons from hypercrosslinked polymers. Adv Mater 28:9804–9810

    Article  CAS  Google Scholar 

  32. Zhang C, Kong R, Wang X, Xu Y, Wang F, Ren W, Wang Y, Su F, Jiang JX (2017) Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 114:608–618

    Article  CAS  Google Scholar 

  33. Saeed AM, Rewatkar PM, Majedi Far H, Taghvaee T, Donthula S, Mandal C, Sotiriou-Leventis C, Leventis N (2017) Selective CO2sequestration with monolithic bimodal micro/macroporous carbon aerogels derived from stepwise pyrolytic decomposition of polyamide-polyimide-polyurea random copolymers. ACS Appl Mater Interfaces 9:13520–13536

    Article  CAS  Google Scholar 

  34. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  35. Huang K, Chai SH, Mayes RT, Veith GM, Browning KL, Sakwa-Novak MA, Potter ME, Jones CW, Wu YT, Dai S (2015) An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO2 capture. Chem Commun 51:17261–17264

    Article  CAS  Google Scholar 

  36. Yue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J, Hu X (2018) CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. J Colloid Interfaces Sci 511:259–267

    Article  CAS  Google Scholar 

  37. He X, Ling P, Yu M, Wang X, Zhang X, Zheng M (2013) Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim Acta 105:635–641

    Article  CAS  Google Scholar 

  38. Wang X, Liu CG, Neff D, Fulvio PF, Mayes RT, Zhamu A, Fang Q, Chen G, Meyer HM, Jang BZ, Dai S (2013) Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J Mater Chem A 1:7920–7926

    Article  CAS  Google Scholar 

  39. Sui ZY, Meng QH, Li JT, Zhu JH, Cui Y, Han BH (2014) High surface area porous carbons produced by steam activation of graphene aerogels. J Mater Chem A 2:9891–9898

    Article  CAS  Google Scholar 

  40. Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10257–10356

    Article  Google Scholar 

  41. Han SJ, Hyeon T (1999) Simple silica-particle template synthesis of mesoporous carbons. Chem Commun 19:1955–1956

    Article  Google Scholar 

  42. Kim TW, Ryoo R, Gierszal KP, Jaroniec M, Solovyov LA, Sakamoto Y, Terasaki O (2005) Characterization of mesoporous carbons synthesized with SBA-16 silica template. J Mater Chem 15:1560–1571

    Article  CAS  Google Scholar 

  43. Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059

    Article  CAS  Google Scholar 

  44. Zhao J, Shu Y, Zhang P (2019) Solid-state cTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry. Chin J Catal 40:1078–1084

    Article  CAS  Google Scholar 

  45. Kan X, Chen X, Chen W, Mi J, Zhang JY, Liu F, Zheng A, Huang K, Shen L, Au C, Jiang L (2019) Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S. ACS Sustain Chem Eng 7:7609–7618

    Article  CAS  Google Scholar 

  46. Ferrero GA, Fuertes AB, Sevilla M (2015) N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A 3:2914–2923

    Article  CAS  Google Scholar 

  47. Zhu D, Cheng K, Wang Y, Sun D, Gan L, Chen T, Jiang J, Liu M (2017) Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochim Acta 224:17–24

    Article  CAS  Google Scholar 

  48. Wang X, Lee JS, Tsouris C, DePaoli DW, Dai S (2010) Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. J Mater Chem 20:4602–4608

    Article  CAS  Google Scholar 

  49. Watanabe H, Asano S, Fujita SI, Yoshida H, Arai M (2015) Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal 5:2886–2894

    Article  CAS  Google Scholar 

  50. Mi J, Liu F, Chen W, Chen X, Shen L, Cao Y, Au C, Huang K, Zheng A, Jiang L (2019) Design of efficient, hierarchical porous polymers endowed with tunable structural base sites for direct catalytic elimination of COS and H2S. ACS Appl Mater Interfaces 11:29950–29959

    Article  CAS  Google Scholar 

  51. Arrigo R, Havecker M, Schlogl R, Su DS (2008) Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem Commun 44:4891–4893

    Article  Google Scholar 

  52. Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21978052 and 22008033), Natural Science Foundation of Jiangxi Province (20192ACB21016) and Natural Science Foundation of Jiangsu Higher Education Institution (19KJB150041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Tao Zheng, Kuan Huang or Fujian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the supplementary information.

Supplementary material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Guan, R., Zheng, WT. et al. Developing porous organic polymers as precursors of nitrogen-decorated micro-mesoporous carbons for efficient capture and conversion of carbon dioxide. J Mater Sci 56, 9315–9329 (2021). https://doi.org/10.1007/s10853-021-05835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05835-z

Navigation