Skip to main content
Log in

A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of telecommunication instruments and electronic devices caused a number of subtle electromagnetic radiations, which have adverse effects on the equipment and especially the health of humans. To date, in order to reduce the harmful radiations, considerable attention has been given to the microwave absorbers due to their several attributes, such as cost-effectiveness, environmental stability and lightweight. Given that polyaniline possesses all above-mentioned properties, in this review, we mainly focus on preparation methods and application of polyaniline-based composites as microwave absorbers, including polyaniline/carbon material composites, polyaniline/magnetic material composites and polyaniline/carbon material/magnetic material composites, and the mechanisms of electromagnetic (EM) wave dissipation have also been discussed. The polyaniline-based composites are more efficient for microwave absorption due to their unique properties; therefore, they could be considered as good materials for microwave absorbers to hinder the EM radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1

Adapted from Ref. [19]. Copyright 2013 Elsevier

Scheme 2

Adapted from Ref. [46]. Copyright 2017 MDPI

Scheme 3

Adapted from Ref. [19]. Copyright 2013 Elsevier

Figure 2

Reproduced with permission from Ref. [56]. Copyright 2015 Wiley online library

Figure 3

Reproduced with permission from Ref. [57]. Copyright 2016 Elsevier

Figure 4

Reproduced with permission from Ref. [60]. Copyright 2014 RSC

Figure 5

Reproduced with permission from Ref. [74]. Copyright 2018 ACS

Figure 6

Reproduced with permission from Ref. [76]. Copyright 2014 RSC

Figure 7

Reproduced with permission from Ref. [77]. Copyright 2009 Elsevier

Figure 8

Reproduced with permission from Ref. [92]. Copyright 2018 Elsevier

Figure 9

Reproduced with permission from Ref. [92]. Copyright 2018 Elsevier

Figure 10

Reproduced with permission from Ref. [45]. Copyright 2014 RSC

Figure 11

Reproduced with permission from Ref. [45]. Copyright 2014 RSC

Figure 12

Reproduced with permission from Ref. [99]. Copyright 2019 ACS

Figure 13

Reproduced with permission from Ref. [99]. Copyright 2019 ACS

Figure 14

Reproduced with permission from Ref. [100]. Copyright 2018 Springer

Figure 15

Reproduced with permission from Ref. [104]. Copyright 2018 RSC

Figure 16

Copyright 2009 Elsevier

Figure 17

Reproduced with permission from Ref. [126]. Copyright 2013 RSC

Figure 18

Reproduced with permission from Ref. [127]. Copyright 2018 Elsevier

Figure 19

Reproduced with permission from Ref. [129]. Copyright 2019 Elsevier

Figure 20

Reproduced with permission from Ref. [146]. Copyright 2015 Elsevier

Figure 21

Reproduced with permission from Ref. [146]. Copyright 2015 Elsevier

Figure 22

Reproduced with permission from Ref. [147]. Copyright 2017 ACS

Figure 23

Reproduced with permission from Ref. [134]. Copyright 2017 RSC

Figure 24

Reproduced with permission from Ref. [134]. Copyright 2017 RSC

Similar content being viewed by others

References

  1. Niu YH (2008) Electromagnetic interference shielding with polyaniline nanofibers composite coatings. Polym Eng Sci 48:355–359

    Article  CAS  Google Scholar 

  2. Kumar KKS, Geetha S, Trivedi DC (2005) Freestanding conducting polyaniline film for the control of electromagnetic radiations. Curr Appl Phys 5:603–608

    Article  Google Scholar 

  3. Wang YY, Jing XL (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 16:344–351

    Article  CAS  Google Scholar 

  4. Jang JO, Park JW (2002) Coating material for shielding electromagnetic waves. U.S. Patent 6 355 707 B1

  5. Lin CT, Swanson B, Kolody M, Sizemore C, Bahns J (2003) Nanograin magnetoresistive manganite coatings for EMI shielding against directed energy pulses. Prog Org Coat 47:190–197

    Article  CAS  Google Scholar 

  6. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  7. Jian X, Wu B, Wei Y et al (2016) Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl Mater Interf 8:6101–6109

    Article  CAS  Google Scholar 

  8. Liu XG, Geng DY, Shang PJ et al (2008) Fluorescence and microwave-absorption properties of multi-functional ZnO-coated alpha-Fe solid-solution nanocapsules. J Phys D-Appl Phys 41:1–7

    Article  Google Scholar 

  9. Liu PB, Huang Y, Wang L, Zong M, Zhang W (2013) Hydrothermal synthesis of reduced graphene oxide-Co3O4 composites and the excellent microwave electromagnetic properties. Mater Lett 107:166–169

    Article  CAS  Google Scholar 

  10. Li Y, Shen B, Pei XL et al (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100:375–385

    Article  CAS  Google Scholar 

  11. Wan MX, Li JC, Li SZ (2001) Microtubules of polyaniline as new microwave absorbent materials. Polym Adv Technol 12:651–657

    Article  CAS  Google Scholar 

  12. Li ZT, Ye MQ, Han AJ, Du H (2016) Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J Mater Sci-Mater Electron 27:1031–1043

    Article  CAS  Google Scholar 

  13. Mondal S, Ganguly S, Das P, Khastgir D, Das NC (2017) Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos Pt B-Eng 119:41–56

    Article  CAS  Google Scholar 

  14. Oyharcabal M, Olinga T, Foulc MP, Lacomme S, Gontier E, Vigneras V (2013) Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos Sci Technol 74:107–112

    Article  CAS  Google Scholar 

  15. Kim BR, Lee HK, Kim E, Lee S-H (2010) Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth Met 160:1838–1842

    Article  CAS  Google Scholar 

  16. Ciric-Marjanovic G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  17. Al-Saleh MH (2015) Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met 205:78–84

    Article  CAS  Google Scholar 

  18. Mondal S, Ghosh S, Ganguly S et al (2017) Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater Res Express 4:1–13

    Article  CAS  Google Scholar 

  19. Jaymand M (2013) Recent progress in chemical modification of polyaniline. Prog Polym Sci 38:1287–1306

    Article  CAS  Google Scholar 

  20. Yan J, Huang Y, Chen XF, Wei C (2016) Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials. Synth Met 221:291–298

    Article  CAS  Google Scholar 

  21. Yam P (1995) Plastics get wired. Sci Am 273:82–87

  22. Akman O, Durmus Z, Kavas H et al (2013) Effect of conducting polymer layer on microwave absorption properties of BaFe12O19-TiO2 composite. Phys Status Solidi A-Appl Mat 210:395–402

    Article  CAS  Google Scholar 

  23. Unver IS, Durmus Z (2017) Magnetic and microwave absorption properties of magnetite (Fe3O4)@ conducting polymer (PANI, PPY, PT) composites. IEEE Trans Magn 53:1–8

    Article  Google Scholar 

  24. Vyas MK, Chandra A (2016) Ion-electron-conducting polymer composites: Promising electromagnetic interference shielding material. ACS Appl Mater Interf 8:18450–18461

    Article  CAS  Google Scholar 

  25. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: A practical approach. Springer, New York

    Book  Google Scholar 

  26. Nalwa HS (1997) Handbook of organic conductive molecules and polymers. Wiley, New Jersey

  27. Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz. Appl Phys Lett 93:1–3

    Article  CAS  Google Scholar 

  28. Tian Z, Yu H, Wang L et al (2014) Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. Rsc Adv 4:28195–28208

    Article  CAS  Google Scholar 

  29. Cai K, Zuo S, Luo S et al (2016) Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. Rsc Adv 6:95965–95972

    Article  CAS  Google Scholar 

  30. Brodinova J, Stejskal J, Kalendova A (2007) Investigation of ferrites properties with polyaniline layer in anticorrosive coatings. J Phys Chem Sol 68:1091–1095

    Article  CAS  Google Scholar 

  31. Rathnayake RMNM, Mantilaka MMMGPG, Hara M et al (2017) Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces. Appl Surf Sci 410:445–453

    Article  CAS  Google Scholar 

  32. Zhu AP, Wang HS, Sun SS, Zhang CQ (2018) The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Prog Org Coat 122:270–279

    Article  CAS  Google Scholar 

  33. Akyuz D, Koca A (2019) An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sens Actuator B-Chem 283:848–856

    Article  CAS  Google Scholar 

  34. Huang JX, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: Facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  CAS  Google Scholar 

  35. Virji S, Huang JX, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496

    Article  CAS  Google Scholar 

  36. Tang W, Peng L, Yuan C et al (2015) Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth Met 202:140–146

    Article  CAS  Google Scholar 

  37. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73

    Article  CAS  Google Scholar 

  38. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  39. Xu Y, Hennig I, Freyberg D et al (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sour 248:483–488

    Article  CAS  Google Scholar 

  40. Zhao L, Zhao L, Xu Y, Qiu T, Zhi L, Shi G (2009) Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim Acta 55:491–497

    Article  CAS  Google Scholar 

  41. Sheng K, Bai H, Sun Y, Li C, Shi G (2011) Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer 52:5567–5572

    Article  CAS  Google Scholar 

  42. Wu L, Lu X, Dhanjai X, et al (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75

    Article  CAS  Google Scholar 

  43. Dat TQ, Ha NT, Hung DQ (2017) Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite: preparation, characterization and microwave absorption properties. J Electron Mater 46:3707–3713

    Article  CAS  Google Scholar 

  44. Jia Q, Wang WZ, Zhao J, Xiao JP, Lu LY, Fan HL (2017) Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet-like composites for enhanced microwave absorption performance. J Alloy Compd 710:717–724

    Article  CAS  Google Scholar 

  45. Gupta TK, Singh BP, Mathur RB, Dhakate SR (2014) Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6:842–851

    Article  CAS  Google Scholar 

  46. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9:1–32

    Article  CAS  Google Scholar 

  47. Li D, Huang JX, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  Google Scholar 

  48. Reiss H (1988) Theoretical-analysis of protonic acid doping of the emeraldine form of polyaniline. J Phys Chem 92:3657–3662

    Article  CAS  Google Scholar 

  49. Wang X, Hou L, Zhang D, Zhou W, Gu Y (2019) Research and application of polyaniline in anti-corrosion. Surf Technol 48:208–215

    Google Scholar 

  50. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484

    Article  CAS  Google Scholar 

  51. Gazdic I, Modric-Sahbazovic A, Sulejmanovic S (2016) Analysis of specific electric conductivity of thin films of polyaniline doped with sulfuric and hydrochloric acid. Tem J 5:38–43

    Google Scholar 

  52. Singla ML, Awasthi S, Srivastava A, Jain DVS (2007) Effect of doping of organic and inorganic acids on polyaniline/Mn3O4 composite for NTC and conductivity behaviour. Sens Actuator A-Phys 136:604–612

    Article  CAS  Google Scholar 

  53. Yoon CO, Kim JH, Sung HK, Lee H (1997) Electrical conductivity and thermopower of phosphoric acid doped polyaniline. Synth Met 84:789–790

    Article  CAS  Google Scholar 

  54. Dhawan SK, Singh N, Rodrigues D (2003) Electromagnetic shielding behaviour of conducting polyaniline composites. Sci Technol Adv Mater 4:105–113

    Article  CAS  Google Scholar 

  55. Pyo M, Hwang JH (2009) Conductivity changes of dodecylbezensulfonic acid-doped polyaniline during pressure loading/unloading. Synth Met 159:700–704

    Article  CAS  Google Scholar 

  56. Wang Y, Ji H, Zhang T, Shi H, Zhang D, Feng H (2015) Effect of fabrication methodology on morphology, conductivity, and thermal-energy storage of a stearic acid/doped-polyaniline phase-change material. Energy Technol 3:734–742

    Article  CAS  Google Scholar 

  57. Krukiewicz K, Katunin A (2016) The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid. Synth Met 214:45–49

    Article  CAS  Google Scholar 

  58. Thomassin J-M, Lou X, Pagnoulle C et al (2007) Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192

    Article  CAS  Google Scholar 

  59. Sun X, He J, Li G et al (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777

    Article  CAS  Google Scholar 

  60. Ren F, Yu H, Wang L, Saleem M, Tian Z, Ren P (2014) Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv 4:14419

    Article  CAS  Google Scholar 

  61. Abdi MM, Kassim AB, Mahmud H, Yunus WMM, Talib ZA (2010) Electromagnetic interference shielding effectiveness of new conducting polymer composite. J Macromol Sci Part A-Pure Appl Chem 47:71–75

    Article  CAS  Google Scholar 

  62. Bhingardive V, Woldu T, Biswas S et al (2016) Microwave absorption in MWCNTs-based soft composites containing nanocrystalline particles as magnetic core and intrinsically conducting polymer as a conductive layer. Chem Sel 1:4747–4752

    CAS  Google Scholar 

  63. Akman O, Kavas H, Baykal A, Durmus Z, Aktas B, Sozeri H (2013) Microwave absorption properties of BaFe12O19-TiO2 composite coated with conducting polymer. J Supercond Nov Magn 26:1369–1373

    Article  CAS  Google Scholar 

  64. Wang Y, Guan H, Dong C, Xiao X, Du S, Wang Y (2016) Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram Int 42:936–942

    Article  CAS  Google Scholar 

  65. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–403

    Article  CAS  Google Scholar 

  66. Qi X, Xu J, Zhong W, Du Y (2015) Synthesis of high purity chain-like carbon nanospheres in ultrahigh yield, and their microwave absorption properties. Rsc Adv 5:16010–16016

    Article  CAS  Google Scholar 

  67. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927. https://doi.org/10.1007/s10853-009-3561-1

    Article  CAS  Google Scholar 

  68. Zhu C-L, Zhang M-L, Qiao Y-J, Xiao G, Zhang F, Chen Y-J (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16235

    Article  CAS  Google Scholar 

  69. Hou C, Li T, Zhao T, Zhang W, Cheng Y (2012) Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Mater Des 33:413–418

    Article  CAS  Google Scholar 

  70. Su Q, Zhong G, Li J, Du G, Xu B (2012) Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties. Appl Phys a-Mater Sci Process 106:59–65

    Article  CAS  Google Scholar 

  71. Zhao B, Guo X, Zhao W et al (2017) Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res 10:331–343

    Article  CAS  Google Scholar 

  72. Cao M-S, Yang J, Song W-L et al (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interf 4:6948–6955

    Article  Google Scholar 

  73. Afghahi SSS, Mirzazadeh A, Jafarian M, Atassi Y (2016) A new multicomponent material based on carbonyl iron/carbon nanofiber/lanthanum–strontium–manganite as microwave absorbers in the range of 8–12 GHz. Ceram Int 42:9697–9702

    Article  CAS  Google Scholar 

  74. Peng F, Meng F, Guo Y, Wang H, Huang F, Zhou Z (2018) Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption. Acs Sustain Chem Eng 6:16744–16753

    Article  CAS  Google Scholar 

  75. Abbasi H, Antunes M, Velasco JI (2019) Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 103:319–373

    Article  CAS  Google Scholar 

  76. Chen X, Meng F, Zhou Z et al (2014) One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6:8140–8148

    Article  CAS  Google Scholar 

  77. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  78. Mostaani F, Moghbeli M, Karimian H (2018) Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. J Thermoplast Compos Mater 31:1393–1415

    Article  CAS  Google Scholar 

  79. Wang Y, Liu A, Han Y et al (2019) Itaconic acid–doped polyaniline/MWCNTs nanocomposites for microwave absorbing materials. High Perform Polym 31:928–934

    Article  CAS  Google Scholar 

  80. Li H, Lu X, Yuan D et al (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5:8694–8698

    Article  CAS  Google Scholar 

  81. Tian X, Meng F, Meng F et al (2017) Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl Mater Interf 9:15711–15718

    Article  CAS  Google Scholar 

  82. Huangfu Y, Ruan K, Qiu H et al (2019) Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos A Appl Sci Manuf 121:265–272

    Article  CAS  Google Scholar 

  83. Guo Y, Li J, Meng F et al (2019) Hybridization-induced polarization of graphene sheets by intercalation-polymerized polyaniline toward high performance of microwave absorption. ACS Appl Mater Interf 11:17100–17107

    Article  CAS  Google Scholar 

  84. Wang Y, Gao X, Fu Y et al (2019) Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos B Eng 169:221–228

    Article  CAS  Google Scholar 

  85. Wang L, Huang Y, Huang HJ (2014) N-doped graphene@polyaniline nanorod arrays hierarchical structures: synthesis and enhanced electromagnetic absorption properties. Mater Lett 124:89–92

    Article  CAS  Google Scholar 

  86. Liu J, Duan Y, Song L, Zhang X (2018) Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption. Org Electron 63:175–183

    Article  CAS  Google Scholar 

  87. Liu J, Duan Y, Song L, Hu J, Zeng Y (2019) Heterogeneous nucleation promoting formation and enhancing microwave absorption properties in hierarchical sandwich-like polyaniline/graphene oxide induced by mechanical agitation. Compos Sci Technol 182:107780

    Article  CAS  Google Scholar 

  88. Mahanta UJ, Gogoi JP, Borah D, Bhattacharyya NS (2019) Dielectric characterization and microwave absorption of expanded graphite integrated polyaniline multiphase nanocomposites in X-band. IEEE Trans Dielectr Electr Insul 26:194–201

    Article  CAS  Google Scholar 

  89. Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113:3146–3155

    Article  CAS  Google Scholar 

  90. Yang Q, Yang W, Shi Y et al (2019) Aligned polyaniline/porous biomass carbon composites with superior microwave absorption properties. J Mater Sci Mater Electron 30:1374–1382

    Article  CAS  Google Scholar 

  91. Li X, Yu L, Zhao W et al (2020) Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379:122393

    Article  CAS  Google Scholar 

  92. Yu L, Zhu Y, Fu Y (2018) Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl Surf Sci 427:451–457

    Article  CAS  Google Scholar 

  93. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17:1679

    Article  CAS  Google Scholar 

  94. Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758

    Article  CAS  Google Scholar 

  95. Osterholm JE, Cao Y, Klavetter F, Smith P (1993) Emulsion polymerization of aniline. Synth Met 55:1034–1039

    Article  CAS  Google Scholar 

  96. She W, Bi H, Wen Z et al (2016) Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interf 8:9782–9789

    Article  CAS  Google Scholar 

  97. Tian C, Du Y, Xu P et al (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interf 7:20090–20099

    Article  CAS  Google Scholar 

  98. Qin Y, Zhang Y, Qi N, Wang QZ, Zhang XJ, Li Y (2019) Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl Mater Interf 11:10409–10417

    Article  CAS  Google Scholar 

  99. Wang H, Meng F, Huang F et al (2019) Interface modulating CNTs@ PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl Mater Interf 11:12142–12153

    Article  CAS  Google Scholar 

  100. Saini M, Singh SK, Shukla R, Kumar A (2018) Mg doped copper ferrite with polyaniline matrix core-shell ternary nanocomposite for electromagnetic interference shielding. J Inorg Organomet Polym Mater 28:2306–2315

    Article  CAS  Google Scholar 

  101. Han X, Wang YS (2007) Studies on the synthesis and microwave absorption properties of Fe3O4/polyaniline FGM. Phys Scr T129:335–339

    Article  CAS  Google Scholar 

  102. Yan W, Wei Z, Hsu C, Wan M (2003) Synthesis of Microspheres of Poly (pyrrolyl methine) by Interfacial Polymerization. Synth Met 135:213–214

    Article  CAS  Google Scholar 

  103. Zuo Y, Yao Z, Lin H et al (2018) Coralliform Li0. 35Zn0. 3Fe2. 35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties. J Alloy Compd 746:496–502

    Article  CAS  Google Scholar 

  104. Yao Z, Lin H, Zhou J, Haidry AA (2018) The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC Adv 8:29344–29355

    Article  Google Scholar 

  105. Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320:2132–2139

    Article  CAS  Google Scholar 

  106. Zhang X (2018) Preparation and microwave absorption properties of polyaniline and magnetite core-shell-structured hybrid. Int J Polym Sci. https://doi.org/10.1155/2018/3417060

    Article  Google Scholar 

  107. Rahimi-Nasrabadi M, Mokarian MH, Ganjali MR, Kashi MA, Arani SA (2018) Synthesis, characterization, magnetic and microwave absorption properties of iron–cobalt nanoparticles and iron–cobalt@ polyaniline (FeCo@ PANI) nanocomposites. J Mater Sci Mater Electron 29:12126–12134

    Article  CAS  Google Scholar 

  108. Almasi-Kashi M, Mokarian MH, Alikhanzadeh-Arani S (2018) Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J Alloy Compd 742:413–420

    Article  CAS  Google Scholar 

  109. Rehman SU, Liu J, Ahmed R, Bi H (2019) Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties. J Saudi Chem Soc 23:385–391

    Article  CAS  Google Scholar 

  110. Jia H, Xing H, Ji X, Gao S (2019) Synergistic effect of hexagonal flake Co3O4@PANI core–shell composites with excellent microwave-absorbing properties. J Mater Sci Mater Electron 30:3386–3395

    Article  CAS  Google Scholar 

  111. Xing H, Yin Q, Liu Z, Wang L (2017) Excellent microwave absorption behaviors of polyaniline composites containing CeO2 nanorods in the X-band. NANO 12:1750047

    Article  CAS  Google Scholar 

  112. Zhao H, Hou L, Bi S, Lu Y (2017) Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt–nickel coatings. ACS Appl Mater Interf 9:33059–33070

    Article  CAS  Google Scholar 

  113. Chen P, Jiang L-W, Yang S-S et al (2020) Facile synthesis and microwave-absorption properties of organic–inorganic CoFe2O4/polyaniline nanocomposites with embedded structure. J Nanosci Nanotechnol 20:1756–1764

    Article  CAS  Google Scholar 

  114. Zhu J, Ye M, Han A (2017) Preparation and microwave absorption properties of BiFeO3 and BiFeO3/PANI composites. J Mater Sci Mater Electron 28:13350–13359

    Article  CAS  Google Scholar 

  115. Bahri-Laleh N, Didehban K, Yarahmadi E, Mirmohammadi SA, Wang G (2018) Microwave absorption properties of polyaniline/carbonyl iron composites. Silicon 10:1337–1343

    Article  CAS  Google Scholar 

  116. Qi T, Yao Z, Zhou J et al (2018) Interfacial polymerization preparation of polyaniline fibers/Co0. 2Ni0. 4Zn0. 4Fe2O4 urchin-like composite with superior microwave absorption performance. J Alloy Compd 769:669–677

    Article  CAS  Google Scholar 

  117. Sulaiman JM, Ismail MM, Rafeeq SN, Mandal A (2020) Enhancement of electromagnetic interference shielding based on Co0.5Zn0.5Fe2O4/PANI-PTSA nanocomposites. Appl Phys A 126:1–9

    Article  CAS  Google Scholar 

  118. Gurusiddesh M, Madhu B, Shankaramurthy G, Shruthi B (2020) Structural, dielectric and magnetic studies on polyaniline-decorated Ni0.5Cu0.5Fe2O4 nanoferrites for electromagnetic interference shielding applications. Appl Phys A 126:85

    Article  CAS  Google Scholar 

  119. Şahin Eİ, Paker S, Kartal M (2019) Characterization, production and microwave absorbing properties of polyaniline-NiFe2O4: Tb composites. Mater Sci 25:322–327

    Google Scholar 

  120. Saini M, Shukla R (2020) Silver nanoparticles-decorated NiFe2O4/polyaniline ternary nanocomposite for electromagnetic interference shielding. J Mater Sci Mater Electron 31:5152–5164

    Article  CAS  Google Scholar 

  121. Li Q, Wang X, Zhang Z et al (2019) In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties. J Mater Sci Mater Electron 30:20515–20524

    Article  CAS  Google Scholar 

  122. Gargama H, Thakur AK, Chaturvedi SK (2016) Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications. J Alloy Compd 654:209–215

    Article  CAS  Google Scholar 

  123. Meng H, Zhang T, Jiang C (2014) Frequency dependence of loss behavior in bonded anisotropic giant magnetostrictive materials. IEEE Trans Magn 50:1–9

    Article  CAS  Google Scholar 

  124. Dhawan SK, Singh K, Bakhshi AK, Ohlan A (2009) Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth Met 159:2259–2262

    Article  CAS  Google Scholar 

  125. Ali NN, Atassi Y, Salloum A, Charba A, Malki A, Jafarian M (2018) Comparative study of microwave absorption characteristics of (Polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages. Mater Chem Phys 211:79–87

    Article  CAS  Google Scholar 

  126. Singh K, Ohlan A, Viet Hung P et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420

    Article  CAS  Google Scholar 

  127. Hazarika A, Deka BK, Kong K et al (2018) Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites. Compos B Eng 140:123–132

    Article  CAS  Google Scholar 

  128. Xin G, Da-Wei H, Yong-Sheng W, Wen Z, Yi-Kang Z, Shu-Lei L (2015) Synthesis and microwave absorption properties of graphene–oxide (GO)/polyaniline nanocomposite with Fe3O4 particles. Chin Phys B 24:027803

    Article  CAS  Google Scholar 

  129. Yao Z, Lin H, Haidry AA, Zhou J, Liu P (2019) Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites. Mater Lett 236:456–459

    Article  CAS  Google Scholar 

  130. Xu Y, Luo JH, Yao W, Xu JG, Li T (2015) Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J Alloy Compd 636:310–316

    Article  CAS  Google Scholar 

  131. Ma Y, Zhou Y, Sun Y et al (2019) Tunable magnetic properties of Fe3O4/rGO/PANI nanocomposites for enhancing microwave absorption performance. J Alloy Compd 796:120–130

    Article  CAS  Google Scholar 

  132. Ma Y, Zhou Y, Xiong Z et al (2019) Facile synthesis of Fe3O4/PANI rod/rGO nanocomposites with giant microwave absorption bandwidth. J Mater Sci Mater Electron 30:4819–4830

    Article  CAS  Google Scholar 

  133. Luo JH, Shen P, Yao W, Jiang CF, Xu JG (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11:1–14

    Article  CAS  Google Scholar 

  134. Luo J, Zuo Y, Shen P, Yan Z, Zhang K (2017) Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline-coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. Rsc Adv 7:36433–36443

    Article  CAS  Google Scholar 

  135. Luo J, Yue L, Ji H, Zhang K, Yu N (2019) Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. J Mater Sci 54:6332–6346. https://doi.org/10.1007/s10853-018-03305-7

    Article  CAS  Google Scholar 

  136. Geng X, He D-W, Wang Y-S, Zhao W, Zhou Y-K, Li S-L (2015) Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles. Chin Phys B 24:1–5

  137. Qiao Y, Xiao J, Jia Q, Lu L, Fan H (2019) Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results Phys 13:1–8

  138. Wang Y, Wu X, Zhang W et al (2018) Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances. Mater Chem Phys 209:23–30

    Article  CAS  Google Scholar 

  139. Cheng B, Wang J, Zhang F, Qi S (2018) Preparation of silver/carbon fiber/polyaniline microwave absorption composite and its application in epoxy resin. Polym Bull 75:381–393

    Article  CAS  Google Scholar 

  140. Wang J, Cheng B, Qiu H, Qi S (2018) Enhanced microwave absorption properties of manganese dioxide/carbon fiber hybrid with polyaniline in the X band. J Electron Mater 47:5564–5571

    Article  CAS  Google Scholar 

  141. Movassagh-Alanagh F, Bordbar-Khiabani A, Ahangari-Asl A (2017) Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos Sci Technol 150:65–78

    Article  CAS  Google Scholar 

  142. Yang L, Cai H, Zhang B, Huo S, Chen X (2018) Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure. Mater Res Express 5:025304

    Article  CAS  Google Scholar 

  143. Fu C, He D, Wang Y, Zhao X (2019) Enhanced microwave absorption properties of polyaniline-modified porous Fe3O4@C nanosheets. J Mater Sci Mater Electron 30:11907–11913

    Article  CAS  Google Scholar 

  144. Peymanfar R, Javidan A, Javanshir S (2017) Preparation and investigation of structural, magnetic, and microwave absorption properties of aluminum-doped strontium ferrite/MWCNT/polyaniline nanocomposite at KU-band frequency. J Appl Polym Sci 134:45135

    Article  CAS  Google Scholar 

  145. Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Adv Technol 27:1246–1257

    Article  CAS  Google Scholar 

  146. Luo JH, Xu Y, Yao W, Jiang CF, Xu JG (2015) Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos Sci Technol 117:315–321

    Article  CAS  Google Scholar 

  147. Manna K, Srivastava SK (2017) Fe3O4@Carbon@polyaniline trilaminar core-shell composites as superior microwave absorber in shielding of electromagnetic pollution. Acs Sustai Chem Eng 5:10710–10721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Yu.

Ethics declarations

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, for the manuscript entitled, “Research advances on the preparation of polyaniline-based composites and their electromagnetic absorption property”.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Yu, H., Wang, L. et al. A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J Mater Sci 56, 5449–5478 (2021). https://doi.org/10.1007/s10853-020-05631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05631-1

Navigation