Skip to main content

Advertisement

Log in

Novel rare earth yttrium doping effect on physical properties of PbS nanostructures: facile synthesis and characterization

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric properties of pure and yttrium-doped PbS nanoparticles synthesized by the coprecipitation chemical synthesis route have been studied by several characterizations. X-ray diffraction patterns of samples were employed to estimate the crystallite sizes and intrinsic microstrains using Williamson–Hall (W–H) plot analysis. The crystallite size and intrinsic macrostrain values were evaluated in the range of 13.7–15.9 nm and 1.09 × 10–3–1.72 × 10–3, respectively, using W–H plots. The formation of nanoparticles, nanoflakes, sponge, and nanosheets were seen via scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) of 5.0 wt% confirms the Y: PbS sample elements' chemical composition and stoichiometry. The optical band gaps increase in the range of (0.93–1.17 eV) with an increase in the dislocation density. The higher values of dielectric constant (23.6–28.0), dielectric loss (37.6–176.8), loss tangent (2.7–8.6), and electrical conductivity [  10.2 to (  11.7) S/m] have been reported at the lower frequency. The highest electrical conductivity values were obtained in the range of [  4.71 to (  4.81) S/m] for as-prepared samples. The greater capacitance and impedance values were found at 3 kHz and decrease with increasing the frequency up to 10 MHz. The current–voltage characteristic curves of undoped and Y: PbS NPs were performed under biased voltage. The space charge current density was noticed in the range of (8.7 × 10–4–4.2 × 10–4 amp/cm2) at 1.0, 2.5, and 5.0 wt% of Y: PbS samples. The enhancement in the optical band gap and dielectric and electric properties on yttrium doping in PbS compared to pristine PbS NPs makes them suitable for optoelectronic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  2. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  Google Scholar 

  3. Cardona M, Greenaway DL (1964) Optical properties and band structure of group IV-VI and group V materials. Phys Rev 133:A1685

    Google Scholar 

  4. Machol JL, Wise FW, Patel RC, Tanner DB (1993) Vibronic quantum beats in PbS microcrystallites. Phys Rev B 48:2819

    CAS  Google Scholar 

  5. Chu J, Sher A (2008) Physics and properties of narrow gap semiconductors. Springer, Dordrecht

    Google Scholar 

  6. Kane R, Cohen R, Silbey R (1996) Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 100:7928–7932

    CAS  Google Scholar 

  7. Wang Y (1991) Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res 24:133–139

    CAS  Google Scholar 

  8. Guerreiro P, Ten S, Borrelli N, Butty J, Jabbour G, Peyghambarian N (1997) PbS quantum-dot doped glasses as saturable absorbers for mode-locking of a Cr: forsterite laser. Appl Phys Lett 71:1595–1597

    CAS  Google Scholar 

  9. Hirata H, Higashiyama K (1971) Analytical study of the lead ion-selective ceramic membrane electrode. Bull Chem Soc Jpn 44:2420–2423

    CAS  Google Scholar 

  10. Nair P, Gomezdaza O, Nair M (1992) Metal sulphide thin film photography with lead sulphide thin films. Adv Mater Opt Electron 1:139–145

    CAS  Google Scholar 

  11. Wang Y, Suna A, Mahler W, Kasowski R (1987) PbS in polymers. from molecules to bulk solids. J Chem Phys 87:7315–7322

    CAS  Google Scholar 

  12. Qadri SB, Yang J, Ratna B, Skelton EF, Hu J (1996) Pressure-induced structural transitions in nanometer-sized particles of PbS. Appl Phys Lett 69:2205–2207

    CAS  Google Scholar 

  13. Wan J, Chen X, Wang Z, Yu W, Qian Y (2004) Synthesis of uniform PbS nanorod bundles via a surfactant-assisted interface reaction route. Mater Chem Phys 88:217–220

    CAS  Google Scholar 

  14. Dong L, Chu Y, Liu Y, Li M, Yang F, Li L (2006) Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers, and dendritic nanostructures at a lower temperature in aqueous solution. J Colloid Interface Sci 301:503–510

    CAS  Google Scholar 

  15. Levina L, Sukhovatkin V, Musikhin S, Cauchi S, Nisman R, Bazett-Jones DP, Sargent EH (2005) Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma. Adv Mater 17:1854–1857

    CAS  Google Scholar 

  16. Dong L, Chu Y, Zhuo Y, Zhang W (2009) Two-minute synthesis of PbS nanocubes with high yield and good dispersibility at room temperature. Nanotechnology 20:125301

    Google Scholar 

  17. Zhao N, Qi L (2006) Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv Mater 18:359–362

    CAS  Google Scholar 

  18. Shen X-F, Yan X-P (2008) Environmentally benign and cost-effective synthesis of well-aligned nanoporous PbS nanowire architectures. J Mater Chem 18:4631–4635

    CAS  Google Scholar 

  19. Premathilaka SM, Jiang Z, Antu A, Leffler A, Hu J, Roy A, Sun L (2017) Synthesis of colloidal PbS nanosheets with nearly 100% success rate. MRS Adv 2:3703–3708

    CAS  Google Scholar 

  20. Shkir M, AlFaify S, Ganesh V, Yahia IS (2017) Facile one pot synthesis of PbS nanosheets and their characterization. Solid State Sci 70:81–85

    CAS  Google Scholar 

  21. Bhandari GB, Subedi K, He Y, Jiang Z, Leopold M, Reilly N, Lu HP, Zayak AT, Sun L (2014) Thickness-controlled synthesis of colloidal PbS nanosheets and their thickness-dependent energy gaps. Chem Mater 26:5433–5436

    CAS  Google Scholar 

  22. Antu AD, Jiang Z, Premathilka SM, Tang Y, Hu J, Roy A, Sun L (2018) Bright colloidal PbS nanoribbons. Chem Mater 30:3697–3703

    CAS  Google Scholar 

  23. Shkir M, Khan A, Hamdy M, AlFaify S (2020) A facile microwave synthesis of PbS: Sr nanoparticles and their key structural, morphological, optical, photoluminescence, dielectric and electrical studies for optoelectronics. Mater Res Express 6:1250–1256

    Google Scholar 

  24. Shkir M, Khan MT, Khan A, El-Toni AM, Aldalbahi A, AlFaify S (2019) Facilely synthesized Cu: PbS nanoparticles and their structural, morphological, optical, dielectric and electrical studies for optoelectronic applications. Mater Sci Semicond Process 96:16–23

    CAS  Google Scholar 

  25. Shkir M, Chandekar KV, Khan A, El-Toni AM, AlFaify A (2020) A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater Sci Semicond Process 107:104807

    CAS  Google Scholar 

  26. Suganya M, Anitha S, Prabha D, Balamurugan S, Srivind J, Balu A (2018) Enhanced photocatalytic and antifungal properties of Sr-doped PbS nanopowders. Mater Technol 33:214–219

    CAS  Google Scholar 

  27. Yücel E, Yücel Y (2017) Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram Int 43:407–413

    Google Scholar 

  28. Cotton SA (2006) Scandium, yttrium and the lanthanides: inorganic and coordination chemistry. In: King RB, Crabtree RH, Lukehart CM, Atwood DA, Scott RA (eds) Encyclopedia of inorganic chemistry. Wiley, Chichester. https://doi.org/10.1002/0470862106.ia211

    Chapter  Google Scholar 

  29. Li C, Liu M, Zeng Y, Yu D (1997) Preparation and properties of yttrium-modified lead zirconate titanate ferroelectric thin films. Sens Actuators A 58(3):245–247

    CAS  Google Scholar 

  30. Kong J, Tang DY, Zhao B, Lu J, Ueda K, Yagi H, Yanagitani T (2005) 9.2-W diode-pumped Yb:Y2O3 ceramic laser. Appl Phys Lett 86(16):161116

    Google Scholar 

  31. Moreno OP, Perez RG, Merino RP, Portillo MC, Tellez GH, Rosas ER (2016) Optical and structural properties of PbSIn3+ nanocrystals grown by chemical bath. Thin Solid Films 616:800–807. https://doi.org/10.1016/j.tsf.2016.10.018

    Article  CAS  Google Scholar 

  32. Chávez Portillo M, Portillo Moreno O, Gutiérrez Pérez R, Palomino Merino R, Santiesteban Juarez H, Tehuacanero Cuapa S, Rubio Rosas E (2017) Characterization and growth of doped-PbS in situ with Bi3+, Cd2+ and Er3+ ions by chemical bath. Mater Sci Semicond Process 72:22–31. https://doi.org/10.1016/j.mssp.2017.09.012

    Article  CAS  Google Scholar 

  33. Gracia AR, Portillo MC, Juarez HS, Castillo MP, Rosas ER, Garcıa MA, Dıaz AR, Sauceda SS, Perez ARG, Portillo O (2018) Moreno growth of Er3+-doped PbS nanocrystals by chemical bath. Optik 156:247–259. https://doi.org/10.1016/j.ijleo.2017.11.042

    Article  CAS  Google Scholar 

  34. Pérez RG, Moreno OP, Merino RP, Lima LAC, Specia MMM, Téllez GH, Rosas ER, Rodríguez AM (2018) Optical, morphological and structural characterization of Er3+-Bi3+ co-doped PbS nanocrystals grown by chemical bath. Optik 162:182–195. https://doi.org/10.1016/j.ijleo.2018.02.077

    Article  CAS  Google Scholar 

  35. Chandekar KV, Kant KM (2017) Strain induced magnetic anisotropy and 3d7 ions effect in CoFe2O4 nanoplatelets. Superlattices Microstruct 111:610–627

    CAS  Google Scholar 

  36. Chandekar KV, Kant KM (2018) Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method. J Mol Struct 1154:418–427

    CAS  Google Scholar 

  37. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(751–7):67

    Google Scholar 

  38. Zelaya-Angel O, Tomas SA, Rodriguez P, Mendoza Alvarez JG, Lozada Morales R, Portillo Moreno O, Gonzalez Hernandez J (2012) Enhancement of photoluminescence due to erbium-doped in CdS thin films. J Mater Sci 47:479–485. https://doi.org/10.1007/s10853-011-5823-y

    Article  CAS  Google Scholar 

  39. Shkir M, Ashraf I, Khan A, Khan MT, El-Toni AM, AlFaify S (2020) A facile spray pyrolysis fabrication of Sm: CdS thin films for high-performance photodetector applications. Sens Actuators A 306:111952

    CAS  Google Scholar 

  40. Shkir M, Anis M, Shaikh SS, Hamdy MS, AlFaify S (2020) Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics. Appl Phys B 126:121

    CAS  Google Scholar 

  41. Shkir M, Chandekar KV, Alshehri BM, Khan A, AlFaify S, Hamdy MS (2020) A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl Nanosci 10:1811–1823

    CAS  Google Scholar 

  42. Chandekar KV, Shkir M, Al-Shehri BM, AlFaify S, Halor RG, Khan A, Al-Namshah KS, Hamdy MS (2020) Visible light sensitive Cu doped ZnO: facile synthesis, characterization and high photocatalytic response. Mater Charact 165:110387

    CAS  Google Scholar 

  43. Nanda K, Sarangi S, Sahu S, Deb S, Behera S (1999) Raman spectroscopy of CdS nanocrystalline semiconductors. Phys B 262:31–39

    CAS  Google Scholar 

  44. Smith GD, Firth S, Clark RJ, Cardona M (2002) First-and second-order Raman spectra of galena (PbS). J Appl Phys 92:4375–4380

    CAS  Google Scholar 

  45. Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76:1376

    CAS  Google Scholar 

  46. Cao H, Wang G, Zhang S, Zhang X (2006) Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17:3280

    CAS  Google Scholar 

  47. Krauss TD, Wise FW (1997a) Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys Rev B 55:9860

    CAS  Google Scholar 

  48. Krauss TD, Wise FW (1997b) Coherent acoustic phonons in a semiconductor quantum dot. Phys Rev Lett 79:5102

    CAS  Google Scholar 

  49. Nanda K, Sahu S, Soni R, Tripathy S (1998) Raman spectroscopy of PbS nanocrystalline semiconductors. Phys Rev B 58:15405

    CAS  Google Scholar 

  50. Bazzi R, Brenier A, Perriat P, Tillement O (2005) Optical properties of neodymium oxides at the nanometer scale. J Lumin 113:161–167

    CAS  Google Scholar 

  51. Ortuño-López MB, cSotelo-Lerma M, Mendoza-Galván A, Ramírez-Bon R (2004) Optical band gap tuning and study of strain in CdS thin films. Vacuum 76:181–184

    Google Scholar 

  52. Smyth C (1965) Dielectric behaviour and structure. MeGraw Hill, New York

    Google Scholar 

  53. Moreels I, Lambert K, Smeets D, De M, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030

    CAS  Google Scholar 

  54. Sihvola A (2001) Two main avenues leading to the maxwell garnett mixing rule. J Electromagn Waves Appl 15:715–725

    Google Scholar 

  55. Khan AH, Pal S, Dalui A, Pradhan J, Sarma DD, Acharya S (2017) Solution-processed free-standing ultrathin two-dimensional PbS nanocrystals with efficient and highly stable dielectric properties. Chem Mater 29:1175–1182

    CAS  Google Scholar 

  56. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken

    Google Scholar 

  57. Jonscher AK (1977) Theuniversal’dielectric response. Nature 267:673–679

    CAS  Google Scholar 

  58. Yang J, Meng X, Shen M, Fang L, Wang J, Lin T, Sun J, Chu J (2008) Hopping conduction and low-frequency dielectric relaxation in 5 mol% Mn doped (Pb, Sr) TiO3 films. J Appl Phys 104:104113

    Google Scholar 

  59. Ramasamy RP, Yang K, Rafailovich MH (2014) Polypropylene–graphene–a nanocomposite that can be converted into a meta-material at desired frequencies. RSC Adv 4:44888–44895

    Google Scholar 

  60. Rhoderick EH (1982) Metal-semiconductor contacts. IEE Proc Solid State Electron Devices 129:1

    CAS  Google Scholar 

  61. Gupta R, Misra S, Malhotra B, Beladakere N, Chandra S (1991) Metal/semiconductive polymer Schottky device. Appl Phys Lett 58:51–52

    CAS  Google Scholar 

  62. Panigrahi U, Das P, Biswal R, Sathe V, Babu P, Mitra A, Mallick P (2020) Zn doping induced enhancement of multifunctional properties in NiO nanoparticles. J Alloy Compd 833:155050

    CAS  Google Scholar 

  63. Mead CA (1966) Metal-semiconductor surface barriers. Solid State Electron 9:1023–1033

    CAS  Google Scholar 

  64. Aydogan A, Saglam M, Turut A (2005) The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure. Polymer 46:563

    CAS  Google Scholar 

  65. Kohnen E, Jost M, Morales VAB, Tockhorn P, Al AA, Macco B, Kegermann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S (2019) Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain Energy Fuels 3:1995

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Alshahrani, Mohd. Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandekar, K.V., Alshahrani, T., Ben Gouider Trabelsi, A. et al. Novel rare earth yttrium doping effect on physical properties of PbS nanostructures: facile synthesis and characterization. J Mater Sci 56, 4763–4781 (2021). https://doi.org/10.1007/s10853-020-05539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05539-w

Navigation