Skip to main content
Log in

Protamine assisted rapid synthesis of carbon dots for living nucleolus imaging and gene delivery applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamics of the nucleolus in living cells are important in understanding cellular behavior and malignant transformation. However, construction of a fluorescent probe for long-term monitoring of nucleolus is significantly constrained by the cost, cellular barriers, cytotoxicity, and photobleaching. Herein, a one-pot microwave-assisted synthesis is developed for facile and quick preparation (domestic microwave oven, 7.5 min) of fluorescent carbon dots (CDs) for nucleolus imaging and tracking merely by adding protamine (PTM) into the precursor solution. The as-prepared carbon dots (CD-PTMs) feature photostability, biocompatibility, multicolor emission, and fluorescence enhancement upon binding with RNA. Significantly, CD-PTMs exhibit the capability of crossing both the cytoplasm and nuclear membranes, and located at the nucleolus for long-term (at least 12 h) imaging studies. Moreover, CD-PTMs are demonstrated to be capable of serving as efficient nanocarriers for in vitro transfection applications by taking advantage of the positively charged surface PTM derivative, showing the potential of CD-PTMs as multifunctional nanoprobes for the bioapplications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS (2019) Nucleolus: a central hub for nuclear functions. Trends Cell Biol 29:647–659. https://doi.org/10.1016/j.tcb.2019.04.003

    Article  CAS  Google Scholar 

  2. Liu H, Yang J, Li Z, Xiao L, Aryee AA, Sun Y, Yang R, Meng H, Qu L, Lin Y, Zhang X (2019) Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging. Anal Chem 91:9259–9265. https://doi.org/10.1021/acs.analchem.9b02147

    Article  CAS  Google Scholar 

  3. Stark LA, Taliansky M (2009) Old and new faces of the nucleolus. Embo Rep 10:35–40. https://doi.org/10.1038/embor.2008.230

    Article  CAS  Google Scholar 

  4. Wang L, Wu B, Li W, Wang S, Li Z, Li M, Pan D, Wu M (2018) Amphiphilic graphene quantum dots as self-targeted fluorescence probes for cell nucleus imaging. Adv Biosyst 2:1700191. https://doi.org/10.1002/adbi.201700191

    Article  CAS  Google Scholar 

  5. Hua XW, Bao YW, Chen Z, Wu FG (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9:10948–10960. https://doi.org/10.1039/c7nr03658b

    Article  CAS  Google Scholar 

  6. Wang X, Wang Y, He H, Ma X, Chen Q, Zhang S, Ge B, Wang S, Nau WM, Huang F (2017) Deep-red fluorescent gold nanoclusters for nucleoli staining: real-time monitoring of the nucleolar dynamics in reverse transformation of malignant cells. ACS Appl Mater Inter 9:17799–17806. https://doi.org/10.1021/acsami.7b04576

    Article  CAS  Google Scholar 

  7. Li Q, Ohulchanskyy TY, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad PN (2010) Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cellsin vitro. J Phys Chem C 114:12062–12068. https://doi.org/10.1021/jp911539r

    Article  CAS  Google Scholar 

  8. Xiong Y, Schneider J, Reckmeier CJ, Huang H, Kasak P, Rogach AL (2017) Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots. Nanoscale 9:11730–11738. https://doi.org/10.1039/c7nr03648e

    Article  CAS  Google Scholar 

  9. Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Kose ME, Chen B, Veca LM, Xie S (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  Google Scholar 

  10. Huo F, Karmaker PG, Liu Y, Zhao B, Yang X (2020) Preparation and biomedical applications of multicolor carbon dots: recent advances and future challenges. Part Part Syst Char 37:1900489. https://doi.org/10.1002/ppsc.201900489

    Article  Google Scholar 

  11. Datta KKR, Kozák O, Ranc V, Havrdová M, Bourlinos AB, Šafářová K et al (2014) Quaternized carbon dot-modified graphene oxide for selective cell labelling—controlled nucleus and cytoplasm imaging. Chem Comm 50:10782–10785. https://doi.org/10.1039/c4cc02637c

    Article  CAS  Google Scholar 

  12. Hill SA, Sheikh S, Zhang Q, Ballesteros LS, Herman A, Davis SA et al (2019) Selective LED-activated photothermal killing of cancer cells using nucleus targeting fluorescent carbon dots. Nanoscale Adv 1:2840–2846. https://doi.org/10.1039/C9NA00293F

    Article  CAS  Google Scholar 

  13. Sun S, Chen J, Jiang K, Tang Z, Wang Y, Li Z et al (2019) Ce6-modified carbon dots for multimodal-imaging-guided and single-nir-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl Mater Inter 11:5791–5803. https://doi.org/10.1021/acsami.8b19042

    Article  CAS  Google Scholar 

  14. Rao C, Singh A, Verma NC, Garg N, Nandi CK (2019) One pot synthesis of amphiphilic carbogenic fluorescent nanodots for bioimaging. Chem Nano Mat 5:417–421. https://doi.org/10.1002/cnma.201800663

    Article  CAS  Google Scholar 

  15. Khan S, Verma NC, Chethana NCK (2018) Carbon dots for single-molecule imaging of the nucleolus. ACS Appl Nano Mate 1:483–487. https://doi.org/10.1021/acsanm.7b00175

    Article  CAS  Google Scholar 

  16. Hua X, Bao Y, Wu F (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Inter 10:10664–10677. https://doi.org/10.1021/acsami.7b19549

    Article  CAS  Google Scholar 

  17. Yang JJ, Gao G, Zhang XD, Ma YH, Jia HR, Jiang YW et al (2017) Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules. Nanoscale 9:15441–15452. https://doi.org/10.1039/c7nr05613c

    Article  CAS  Google Scholar 

  18. Luo PG, Sahu S, Yang S, Sonkar SK, Wang J, Wang H, LeCroy GE, Sun LCAY (2016) Carbon “ quantum ” dots for optical bioimaging. J Mater Chem B 1:2116–2127. https://doi.org/10.1039/c3tb00018d

    Article  CAS  Google Scholar 

  19. Cheng Y, Li C, Mu R, Li Y, Xing T, Chen B, Huang C (2018) Dynamically long-term imaging of cellular RNA by Fluorescent carbon dots with surface isoquinoline moieties and amines. Anal Chem 90:11358–11365. https://doi.org/10.1021/acs.analchem.8b02301

    Article  CAS  Google Scholar 

  20. Hua XW, Bao YW, Zeng J, Wu FG (2019) Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: high-resolution cell imaging and in vivo tracking. ACS Appl Mater Inter 11:32647–32658. https://doi.org/10.1021/acsami.9b09590

    Article  CAS  Google Scholar 

  21. He H, Wang Z, Cheng T, Liu X, Wang X, Wang J et al (2016) Visible and near-infrared dual-emission carbogenic small molecular complex with high RNA selectivity and renal clearance for nucleolus and tumor imaging. ACS Appl Mater Inter 8:28529–28537. https://doi.org/10.1021/acsami.6b10737

    Article  CAS  Google Scholar 

  22. Zholobak NM, Popov AL, Shcherbakov AB, Popova NR, Guzyk MM, Antonovich VP et al (2016) Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling. Beilstein J Nanotechnol 7:1905–1917. https://doi.org/10.3762/bjnano.7.182

    Article  CAS  Google Scholar 

  23. Li H, Zhang M, Song Y, Wang H, Liu C, Fu Y et al (2013) Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J Mater Chem B 6:5708–5717. https://doi.org/10.1039/C8TB01751D

    Article  Google Scholar 

  24. Gao MX, Yang L, Zheng Y, Yang XX, Zou HY et al (2016) “Click” on the alkynylated carbon quantum dots: an efficient surface functionalization for specific biosensing and bioimaging. Chem-Eur J 23:2171–2178. https://doi.org/10.1002/chem.201604963

    Article  CAS  Google Scholar 

  25. Scott MS, Boisvert F, McDowall MD, Lamond AI, Barton GJ (2010) Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 38:7388–7399. https://doi.org/10.1093/nar/gkq653

    Article  CAS  Google Scholar 

  26. Song Y, Li X, Shuang C, Zhao H, Mingqian T (2019) Nuclear-targeted of TAT peptide-conjugated carbon dots for both one-and two-photon fluorescence imaging. Colloids Surf B Biointerfaces 180:449–456. https://doi.org/10.1016/j.colsurfb.2019.05.015

    Article  CAS  Google Scholar 

  27. Barbosa CDDS, Correa JR, Medeiros GA, Barreto G, Magalhaes KG, de Oliveira AL, Spencer J, Rodrigues MO, Neto BAD (2015) Carbon dots (c-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chem Eur J 21:5055–5060. https://doi.org/10.1002/chem.201406330

  28. Yang L, Jiang W, Qiu L, Jiang X, Zuo D, Wang DK, Li Y (2015) One pot synthesis of high quantum yield of polyethylene glycol anchored carbon dots and functionalized with nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7:6104–6113. https://doi.org/10.1039/c5nr01080b

    Article  CAS  Google Scholar 

  29. Xue X, Fang T, Yin L, Jiang J, He Y, Dai Y, Wang D (2018) Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv 25:1826–1839. https://doi.org/10.1080/10717544.2018.1482975

    Article  CAS  Google Scholar 

  30. Wang CQ, Wu JL, Zhuo RX, Cheng SX (2014) Protamine sulfate-calcium carbonate-plasmid DNA ternary nanoparticles for efficient gene delivery. Mol Biosyst 10:672–678. https://doi.org/10.1039/c3mb70502a

    Article  CAS  Google Scholar 

  31. Tao Y, Lu SY, Geng YJ, Zhu SJ, Redfern SA et al (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed 57:2393–2938. https://doi.org/10.1002/anie.201712662

    Article  CAS  Google Scholar 

  32. Ando TYMSK (1973) Protamines: isolation, characterization, structure and function. Mol Biol Biochem Biophys 12:1–114

    Article  CAS  Google Scholar 

  33. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171

    Article  CAS  Google Scholar 

  34. Toniolo CBGMM (1979) Protamines: II. Circular dichroism study of the three main components of clupeine. Biochim Biophys Acta 576:429–439

    Article  CAS  Google Scholar 

  35. Gucinski AC, Boyne MT, Keire AD (2015) Modern analytics for naturally derived complex drug substances: NMR and MS tests for protamine sulfate from chum salmon. Anal Bioanal Chem 407:749–759. https://doi.org/10.1007/s00216-014-8172-2

    Article  CAS  Google Scholar 

  36. Sun S, Zhang L, Jiang K, Wu A, Lin H (2016) Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater 28:8659–8668. https://doi.org/10.1021/bc0501451

    Article  CAS  Google Scholar 

  37. Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16:1240–1245. https://doi.org/10.1021/acs.chemmater.6b03695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21906033 and 91643204), the introduced innovative R&D team project under the “The Pearl River Talent Recruitment Program” of Guangdong Province (2019ZT08L387), and National Key R&D Program of China (2016YFA0203103). We thank Haiyan Sui and Xiaoju Li from State Key Laboratory of Microbial Technology in Shandong University for NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Ma, G., Wang, H. et al. Protamine assisted rapid synthesis of carbon dots for living nucleolus imaging and gene delivery applications. J Mater Sci 56, 4396–4406 (2021). https://doi.org/10.1007/s10853-020-05526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05526-1

Navigation