Skip to main content
Log in

Solution-combusted nanosized Ni–Al2O3 catalyst for slurry CO methanation: effects of alkali/alkaline earth metal chlorides

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solution combustion synthesis (SCS) possesses many advantages for preparation of nanosized materials. In the process of SCS, a large amount of heat release results in the agglomeration of particles. Thus, the controllable synthesis of solution combustion is necessary. In this study, Ni–Al2O3 nanoparticles with various metal chlorides, i.e., LiCl, NaCl, KCl, MgCl2 and CaCl2, were prepared by SCS method and performed for CO methanation reaction in a slurry-bed reactor. All of the introduced metal chlorides could absorb reaction heat during the combustion process, among which the addition of NaCl minimizes the combustion temperature for its high heat capacity. Moreover, the molten NaCl exerts a steric hindrance effect that restrains the agglomeration of NiO particles, leading to the highest Ni dispersion and smallest Ni particles. MgCl2-added sample exhibits the lowest reducibility and Ni dispersion and the worst methanation activity. The performance shows that, under a harsh condition of 310 °C and 9200 mL (gcat h)−1, NaCl-added Ni–Al2O3 catalyst exhibits the optimal CO conversion, which keeps stable at ca. 87% in a 100-h test. This study offers a new strategy for nanosized catalyst preparation via SCS by introducing metal chlorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhou J, Ma H, Jin F, Zhang H, Ying W (2018) Mn and Mg dual promoters modified Ni/α–Al2O3 catalysts for high temperature syngas methanation. Fuel Process Technol 172:225

    Article  CAS  Google Scholar 

  2. Jiang P, Zhao J, Han Y, Wang X, Pei Y, Zhang Z, Liu Y, Ren J (2019) Highly active and dispersed Ni/Al2O3 catalysts for CO methanation prepared by the cation–anion double-hydrolysis method: effects of Zr, Fe, and Ce promoters. Ind Eng Chem Res 58:11728

    Article  CAS  Google Scholar 

  3. Ma H, Zeng L, Tian H, Li D, Wang X, Li X, Gong J (2016) Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts. Appl Catal B 181:321

    Article  CAS  Google Scholar 

  4. Foppa L, Margossian T, Kim SM, Müller C, Copéret C, Larmier K, Comas-Vives A (2017) Contrasting the role of Ni/Al2O3 interfaces in water–gas shift and dry reforming of methane. J Am Chem Soc 139:17128

    Article  CAS  Google Scholar 

  5. Liu Q, Zhong Z, Gu F, Wang X, Lu X, Li H, Xu G, Su F (2016) CO methanation on ordered mesoporous Ni–Cr–Al catalysts: effects of the catalyst structure and Cr promoter on the catalytic properties. J Catal 337:221

    Article  CAS  Google Scholar 

  6. Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89:1763

    Article  CAS  Google Scholar 

  7. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation—from fundamentals to current projects. Fuel 166:276

    Article  Google Scholar 

  8. Liu S-S, Jin Y-Y, Han Y, Zhao J, Ren J (2018) Highly stable and coking resistant Ce promoted Ni/SiC catalyst towards high temperature CO methanation. Fuel Process Technol 177:266

    Article  CAS  Google Scholar 

  9. Lv Y, Xin Z, Meng X, Tao M, Bian Z (2018) Ni based catalyst supported on KIT-6 silica for CO methanation: Confinement effect of three dimensional channel on NiO and Ni particles. Microporous Mesoporous Mater 262:89

    Article  CAS  Google Scholar 

  10. Gong D, Li S, Guo S, Tang H, Wang H, Liu Y (2018) Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas. Appl Surf Sci 434:351

    Article  CAS  Google Scholar 

  11. Ai H, Yang H, Liu Q, Zhao G, Yang J, Gu F (2018) ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance. Chin J Catal 39:297

    Article  CAS  Google Scholar 

  12. Han Y, Quan Y, Hao P, Zhao J, Ren J (2019) Highly anti-sintering and anti-coking ordered mesoporous silica carbide supported nickel catalyst for high temperature CO methanation. Fuel 257:116006

    Article  CAS  Google Scholar 

  13. Wang X, Lv Y, Bu Y, Zhang F, Li Y, Men Z (2019) A gas-solid fluidized bed reactor for activating the iron-based Fischer–Tropsch synthesis catalyst. Chem Eng J 386:122066

    Article  Google Scholar 

  14. Wang X, Lin T, Li J, Yu F, Lv D, Qi X, Wang H, Zhong L, Sun Y (2019) Direct production of olefins via syngas conversion over Co2C-based catalyst in slurry bed reactor. RSC Adv 9:4131

    Article  CAS  Google Scholar 

  15. Zhang X, Li Z, Guo Q, Fan H, Zheng H, Xie K (2010) Influence of the calcination on the activity and stability of the Cu/ZnO/Al2O3 catalyst in liquid phase methanol synthesis. Fuel 89:1348

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhong L, Wang H, Gao P, Li X, Xiao S, Ding G, Wei W, Sun Y (2016) Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation. J CO2 Util 15:72

    Article  CAS  Google Scholar 

  17. Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83

    Article  CAS  Google Scholar 

  18. Zhang J, Bai Y, Zhang Q, Wang X, Zhang T, Tan Y, Han Y (2014) Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ–Al2O3 catalysts prepared using different methods. Fuel 132:211

    Article  CAS  Google Scholar 

  19. Lefebvre J, Trudel N, Bajohr S, Kolb T (2018) A study on three-phase CO2 methanation reaction kinetics in a continuous stirred-tank slurry reactor. Fuel 217:151

    Article  CAS  Google Scholar 

  20. Meng F, Li Z, Liu J, Cui X, Zheng H (2015) Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor. J Nat Gas Sci Eng 23:250

    Article  CAS  Google Scholar 

  21. Meng F, Li X, Li M, Cui X, Li Z (2017) Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem Eng J 313:1548

    Article  CAS  Google Scholar 

  22. Meng F, Li Z, Ji F, Li M (2015) Effect of ZrO2 on catalyst structure and catalytic methanation performance over Ni-based catalyst in slurry-bed reactor. Int J Hydrog Energy 40:8833

    Article  CAS  Google Scholar 

  23. Meng F, Song Y, Li X, Cheng Y, Li Z (2016) Catalytic methanation performance in a low-temperature slurry-bed reactor over Ni–ZrO2 catalyst: effect of the preparation method. J Sol–Gel Sci Technol 80:759

    Article  CAS  Google Scholar 

  24. Meng F, Li X, Shaw GM, Smith PJ, Morgan DJ, Perdjon M, Li Z (2018) Sacrificial carbon strategy toward enhancement of slurry methanation activity and stability over Ni–Zr/SiO2 catalyst. Ind Eng Chem Res 57:4798

    Article  CAS  Google Scholar 

  25. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493

    Article  CAS  Google Scholar 

  26. Han W, Wang Z, Li X, Tang H, Xi M, Li Y, Liu H (2016) Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane. J Mater Sci 51:11002. https://doi.org/10.1007/s10853-016-0313-x

    Article  CAS  Google Scholar 

  27. Yathisha RO, Arthoba Nayaka Y (2018) Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci 53:678. https://doi.org/10.1007/s10853-017-1496-5

    Article  CAS  Google Scholar 

  28. Rosa R, Veronesi P, Leonelli C (2013) A review on combustion synthesis intensification by means of microwave energy. Chem Eng Process 71:2

    Article  CAS  Google Scholar 

  29. Reddy BM, Reddy GK, Ganesh I, Ferreira JMFJJoMS, (2009) Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. J Mater Sci 44:2743. https://doi.org/10.1007/s10853-009-3358-2

    Article  CAS  Google Scholar 

  30. Gao Y, Meng F, Ji K, Song Y, Li Z (2016) Slurry phase methanation of carbon monoxide over nanosized Ni–Al2O3 catalysts prepared by microwave-assisted solution combustion. Appl Catal A 510:74

    Article  CAS  Google Scholar 

  31. Gao Y, Meng F, Li X, Wen JZ, Li Z (2016) Factors controlling nanosized Ni–Al2O3 catalysts synthesized by solution combustion for slurry-phase CO methanation: the ratio of reducing valences to oxidizing valences in redox systems. Catal Sci Technol 6:7800

    Article  CAS  Google Scholar 

  32. Gao Y, Meng F, Cheng Y, Li Z (2017) Influence of fuel additives in the urea-nitrates solution combustion synthesis of Ni–Al2O3 catalyst for slurry phase CO methanation. Appl Catal A 534:12

    Article  CAS  Google Scholar 

  33. Niu J, Suzuki S, Yi X, Akiyama T (2015) Fabrication of AlN particles and whiskers via salt-assisted combustion synthesis. Ceram Int 41:4438

    Article  CAS  Google Scholar 

  34. Patil KC, Aruna S, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid State Mate Sci 6:507

    Article  CAS  Google Scholar 

  35. Lai W, Song W, Pang L, Wu Z, Zheng N, Li J, Zheng J, Yi X, Fang W (2013) The effect of starch addition on combustion synthesis of NiMo–Al2O3 catalysts for hydrodesulfurization. J Catal 303:80

    Article  CAS  Google Scholar 

  36. Chen W, Hong J, Li Y (2009) Facile fabrication of perovskite single-crystalline LaMnO3 nanocubes via a salt-assisted solution combustion process. J Alloy Compd 484:846

    Article  CAS  Google Scholar 

  37. Zhang J, Xu H, Jin X, Ge Q, Li W (2005) Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts for NH3 decomposition. Appl Catal A 290:87

    Article  CAS  Google Scholar 

  38. Araki M, Ponec V (1976) Methanation of carbon monoxide on nickel and nickel–copper alloys. J Catal 44:439

    Article  CAS  Google Scholar 

  39. Perry RH, Green DW (1999) Perry's chemical engineers' handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  40. Guo X, Mao D, Lu G, Wang S, Wu G (2010) Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271:178

    Article  CAS  Google Scholar 

  41. Xia B, Lenggoro IW, Okuyama K (2002) Nanoparticle separation in salted droplet microreactors. Chem Mater 14:2623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘BLUE POINT’ project of Lu’an Mining Group and Graduate Innovation Program of Shanxi Province (No. 2016BY052), Natural Science Foundation of Shanxi Province (201801D121056), Key Research and Development Project of Shanxi Province (International Science and Technology Cooperation Program) (No. 201803D421011) and National Natural Science Foundation of China (U1510203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanhui Meng or Zhong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 9471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ma, J., Meng, F. et al. Solution-combusted nanosized Ni–Al2O3 catalyst for slurry CO methanation: effects of alkali/alkaline earth metal chlorides. J Mater Sci 55, 16510–16521 (2020). https://doi.org/10.1007/s10853-020-05222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05222-0

Navigation