Skip to main content
Log in

Gold nanorods/graphene oxide nanosheets immobilized by polydopamine for efficient remotely triggered drug delivery

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a novel one-pot strategy was utilized to immobilize gold nanorods (GNRs) onto the surface of PEGylated graphene oxide (GO-PEG) via polydopamine (PDA) to fabricate GNRs/GO@PDA hybrid nanosheets. The GNRs/GO@PDA nanosheets possessed excellent photostability and photothermal conversion efficiency (36.10%), due to the robust interfacial immobilization of PDA between GNRs and GO-PEG. Besides, GNRs/GO@PDA also could be utilized to be an efficient drug nano-vehicle that possessed an excellent loading ability for anticancer drug doxorubicin hydrochloride (DOX) (86.16%). Furthermore, the drug release of hybrid nanosheets could be triggered by pH value and near-infrared (NIR) light irradiation, which could be mainly ascribed to the strong ππ stacking interaction between GNRs/GO@PDA and DOX, as well as the brilliant NIR-responsive property of GNRs/GO@PDA. It was found that GNRs/GO@PDA possessed extremely low cytotoxicity to MCF-7 cells even at 250 μg mL−1, while GNRs/GO@PDA(DOX) showed obvious cytotoxicity at 100 μg mL−1. Thus, this paper presents a feasible strategy to fabricate GNRs/GO hybrid nanosheets with high drug loading capacity, excellent photothermal conversion property and pH/NIR-stimuli-responsive drug delivery performance, which possesses brilliant potentials to be an efficient platform for remotely triggered drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Liu YJ, Bhattarai P, Dai ZF, Chen XY (2019) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48(7):2053–2108. https://doi.org/10.1039/c8cs00618k

    Article  CAS  Google Scholar 

  3. Mrowzynski R (2018) Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl Mater Interfaces 10(9):7541–7561. https://doi.org/10.1021/acsami.7b08392

    Article  CAS  Google Scholar 

  4. Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359. https://doi.org/10.1002/adma.201204683

    Article  CAS  Google Scholar 

  5. Moon H, Kumar D, Kim H, Sim C, Chang JH, Kim JM, Kim H, Lim DK (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719. https://doi.org/10.1021/nn506516p

    Article  CAS  Google Scholar 

  6. Gao S, Zhang LW, Wang GH, Yang K, Chen ML, Tian R, Ma QJ, Zhu L (2016) Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 79:36–45. https://doi.org/10.1016/j.biomaterials.2015.11.041

    Article  CAS  Google Scholar 

  7. Wei QL, Ni H, Jin X, Yuan J (2015) Graphene oxide wrapped gold nanorods for enhanced photo-thermal stability. RSC Adv 5(68):54971–54977. https://doi.org/10.1039/c5ra08333h

    Article  CAS  Google Scholar 

  8. Turcheniuk K, Hage CH, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Pisfil MG, Heliot L, Boukaert J, Boukherroub R, Szunerits S (2015) Plasmonic photothermal destruction of uropathogenic E-coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J Mater Chem B 3(3):375–386. https://doi.org/10.1039/c4tb01760a

    Article  CAS  Google Scholar 

  9. Sun BM, Wu JR, Cui SB, Zhu HH, An W, Fu QG, Shao CW, Yao AH, Chen BD, Shi DL (2016) In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Res 10(1):37–48. https://doi.org/10.1007/s12274-016-1264-x

    Article  CAS  Google Scholar 

  10. Khan MS, Pandey S, Bhaisare ML, Gedda G, Talib A, Wu HF (2017) Graphene oxide@gold nanorods for chemo-photothermal treatment and controlled release of doxorubicin in mice tumor. Colloids Surf B Biointerfaces 160:543–552. https://doi.org/10.1016/j.colsurfb.2017.09.001

    Article  CAS  Google Scholar 

  11. Yang Y, Wang YL, Zhu MZ, Chen Y, Xiao YZ, Shen YH, Xie AJ (2017) RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy. Biomater Sci 5(5):990–1000. https://doi.org/10.1039/c7bm00007c

    Article  CAS  Google Scholar 

  12. Qian HC, Yang JZ, Lou YT, Rahman O, Li ZY, Ding X, Gao J, Du CW, Zhang DW (2019) Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions. Appl Surf Sci 465:267–278. https://doi.org/10.1016/j.apsusc.2018.09.173

    Article  CAS  Google Scholar 

  13. Xie YJ, Yue LN, Zheng YD, Zhao L, Liang CY, He W, Liu ZW, Sun Y, Yang YY (2019) The antibacterial stability of poly(dopamine) in situ reduction and chelation nano-Ag based on bacterial cellulose network template. Appl Surf Sci 491:383–394. https://doi.org/10.1016/j.apsusc.2019.06.096

    Article  CAS  Google Scholar 

  14. Zeng GJ, Huang L, Huang Q, Liu MY, Xu DZ, Huang HY, Yang ZY, Deng FJ, Zhang XY, Wei Y (2018) Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Appl Surf Sci 459:588–595. https://doi.org/10.1016/j.apsusc.2018.07.144

    Article  CAS  Google Scholar 

  15. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  Google Scholar 

  16. Lee HA, Ma YF, Zhou F, Hong S, Lee H (2019) Material-independent surface chemistry beyond polydopamine coating. Acc Chem Res 52(3):704–713. https://doi.org/10.1021/acs.accounts.8b00583

    Article  CAS  Google Scholar 

  17. Cheng W, Zeng XW, Chen HZ, Li Z, Zeng WF, Mei L, Zhao YL (2019) Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13(8):8537–8565. https://doi.org/10.1021/acsnano.9b04436

    Article  CAS  Google Scholar 

  18. Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339. https://doi.org/10.1021/ma101526k

    Article  CAS  Google Scholar 

  19. Li B, Wang YQ, He J (2019) Gold nanorods-based smart nanoplatforms for synergic thermotherapy and chemotherapy of tumor metastasis. ACS Appl Mater Interfaces 11(8):7800–7811. https://doi.org/10.1021/acsami.8b21784

    Article  CAS  Google Scholar 

  20. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103(35):12999–13003. https://doi.org/10.1073/pnas.0605552103

    Article  CAS  Google Scholar 

  21. Wang FY, Sun QQ, Feng B, Xu ZA, Zhang JY, Xu J, Lu LL, Yu HJ, Wang MW, Li YP, Zhang W (2016) Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer. Adv Healthc Mater 5(17):2227–2236. https://doi.org/10.1002/adhm.201600283

    Article  CAS  Google Scholar 

  22. Hong S, Yeom J, Song IT, Kang SM, Lee H, Lee H (2014) Pyrogallol 2-aminoethane: a plant flavonoid-inspired molecule for material-independent surface chemistry. Adv Mater Interfaces 1(4):1400113. https://doi.org/10.1002/admi.201400113

    Article  CAS  Google Scholar 

  23. Wang SW, Zhao XY, Wang SC, Qian J, He SL (2016) Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl Mater Interfaces 8(37):24368–24384. https://doi.org/10.1021/acsami.6b05907

    Article  CAS  Google Scholar 

  24. Zhang Z, Shi J, Song ZX, Zhu XY, Zhu YP, Cao SK (2018) A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J Mater Sci 53(3):1810–1823. https://doi.org/10.1007/s10853-017-1628-y

    Article  CAS  Google Scholar 

  25. Qi ZE, Shi J, Zhang Z, Cao YC, Li JG, Cao SK (2019) PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater Sci Eng C 104:109889. https://doi.org/10.1016/j.msec.2019.109889

    Article  CAS  Google Scholar 

  26. Song ZX, Shi J, Zhang Z, Qi ZE, Han SR, Cao SK (2018) Mesoporous silica-coated gold nanorods with a thermally responsive polymeric cap for near-infrared-activated drug delivery. J Mater Sci 53(10):7165–7179. https://doi.org/10.1007/s10853-018-2117-7

    Article  CAS  Google Scholar 

  27. Ma H, Shi J, Zhu XY, Zhang Z, Li JG, Cao SK (2019) AuNRs/mesoporous silica/hydroxyapatite nanovehicles with thermally responsive polymeric cap for remotely controlled drug delivery. Adv Compos Hybrid Mater 2(2):242–253. https://doi.org/10.1007/s42114-019-00082-y

    Article  CAS  Google Scholar 

  28. Song ZX, Liu Y, Shi J, Ma T, Zhang Z, Ma H, Cao SK (2018) Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater Sci Eng C 83:90–98. https://doi.org/10.1016/j.msec.2017.11.012

    Article  CAS  Google Scholar 

  29. Roper DK, Ahn W, Hoepfner M (2007) Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C 111(9):3636–3641. https://doi.org/10.1021/jp064341w

    Article  CAS  Google Scholar 

  30. Mi Z, Yang P, Wang R, Unruangsri J, Yang WL, Wang CC, Guo J (2019) Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J Am Chem Soc 141(36):14433–14442. https://doi.org/10.1021/jacs.9b07695

    Article  CAS  Google Scholar 

  31. Huang P, Rong PF, Lin J, Li WW, Yan XF, Zhang MG, Nie LM, Niu G, Lu J, Wang W, Chen XY (2014) Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J Am Chem Soc 136(23):8307–8313. https://doi.org/10.1021/ja503115n

    Article  CAS  Google Scholar 

  32. Zhu XY, Shi J, Ma H, Chen RX, Li JG, Cao SK (2019) Hierarchical hydroxyapatite/polyelectrolyte microcapsules capped with AuNRs for remotely triggered drug delivery. Mater Sci Eng C 99:1236–1245. https://doi.org/10.1016/j.msec.2019.02.078

    Article  CAS  Google Scholar 

  33. Wen HY, Dong CY, Dong HQ, Shen AJ, Xia WJ, Cai XJ, Song YY, Li XQ, Li YY, Shi DL (2012) Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small 8(5):760–769. https://doi.org/10.1002/smll.201101613

    Article  CAS  Google Scholar 

  34. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  Google Scholar 

  35. Shao LH, Zhang RR, Lu JQ, Zhao CY, Deng XW, Wu Y (2017) Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy. ACS Appl Mater Interfaces 9(2):1226–1236. https://doi.org/10.1021/acsami.6b11209

    Article  CAS  Google Scholar 

  36. Liu R, Zhang HC, Zhang FR, Wang XD, Liu XL, Zhang Y (2019) Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater Sci Eng C 96:138–145. https://doi.org/10.1016/j.msec.2018.10.093

    Article  CAS  Google Scholar 

  37. Hu WH, He GL, Zhang HH, Wu XS, Li JL, Zhao ZL, Qiao Y, Lu ZS, Liu Y, Li CM (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86(9):4488–4493. https://doi.org/10.1021/ac5003905

    Article  CAS  Google Scholar 

  38. Zhu B, Wang YM, Liu H, Ying J, Liu CT, Shen CY (2020) Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos Sci Technol. 190:108048. https://doi.org/10.1016/j.compscitech.2020.108048

    Article  CAS  Google Scholar 

  39. Ritger PL, Peppas NA (1987) A simple equation for description of solute release. J Control Release 5(1):37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Project U1704162) and Henan Provincial Natural Science Foundation of China (Project 162300410257).

Author information

Authors and Affiliations

Authors

Contributions

ZQ: Investigation, methodology, writing—original draft. JS: conceptualization, supervision, writing—review and editing, funding acquisition. BZ: investigation. JL: methodology. SC: validation, writing—review and editing

Corresponding authors

Correspondence to Jun Shi or Shaokui Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Shi, J., Zhu, B. et al. Gold nanorods/graphene oxide nanosheets immobilized by polydopamine for efficient remotely triggered drug delivery. J Mater Sci 55, 14530–14543 (2020). https://doi.org/10.1007/s10853-020-05050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05050-2

Navigation