Skip to main content
Log in

Carbon dots incorporated metal–organic framework for enhancing fluorescence detection performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fluorescence detection of environmental pollution residues is hugely significant; thus, the improvements in sensitivity and selectivity are still a great task. In this work, a novel molecularly imprinted fluorescence sensor (CDs&ZIF-8@MIPs) with a core–shell structure was prepared for the highly sensitive and selective quantification of malachite green (MG). The high sensitivity was contributed from carbon dots (CDs) as the fluorescence materials and ZIF-8 nanoparticles served as the support materials to ameliorate the dispersibility of CDs. The high selectivity is mainly derived from fabricating thin molecular imprinting polymers in ZIF-8 surfaces. Under the optimum conditions, CDs&ZIF-8@MIPs displayed rapid reaction time (2.0 min), lower detection limit (2.93 nM) with the concentration linear range of 20–180 nM and high selectivity to MG among MG analogs. Importantly, the developed monitoring method was successfully applied to MG determination with the satisfactory recoveries in environmental water samples. This present work effectively improved the sensitivity and selectivity of fluorescence sensors for MG detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhang Y, Yu W, Pei L, Lai K, Rasco BA, Huang Y (2015) Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem 169:80–84

    CAS  Google Scholar 

  2. Culp SJ, Beland FA (1996) Malachite green: a toxicological review. J Am Coll Toxicol 15:219–238

    Google Scholar 

  3. Li B, Gan L, Owens G, Chen Z (2018) New nano-biomaterials for the removal of malachite green from aqueous solution via a response surface methodology. Water Res 146:55–66

    CAS  Google Scholar 

  4. Zhang X, Yu H, Yang H, Wan Y, Hu H, Zhai Z, Qin J (2015) Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J Colloid Interface Sci 437:277–282

    CAS  Google Scholar 

  5. Gui W, Wang H, Liu Y, Ma Q (2018) Ratiometric fluorescent sensor with molecularly imprinted mesoporous microspheres for malachite green detection. Sens Actuators, B 266:685–691

    CAS  Google Scholar 

  6. Zhang Y, Huang Y, Zhai F, Du R, Liu Y, Lai K (2012) Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem 135:845–850

    CAS  Google Scholar 

  7. Lin Z, Zhang H, Peng A, Lin Y, Li L, Huang Z (2016) Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers. Food Chem 200:32–37

    CAS  Google Scholar 

  8. Jia F, Yang X, Li Z (2016) Synthesis and application of colloidal beta-cyclodextrin-decorated silver nanoparticles for rapid determination of malachite green in environmental water using surface-enhanced Raman spectroscopy. RSC Adv 6:92723–92728

    CAS  Google Scholar 

  9. Xie J, Peng T, Chen DD, Zhang QJ, Wang GM, Wang X, Guo Q, Jiang F, Chen D, Deng J (2013) Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up. J Chromatogr B 913–914:123–128

    Google Scholar 

  10. Sagar K, Smyth MR, Wilson JG, McLaughlin K (1994) High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode. J Chromatogr A 659:329–336

    CAS  Google Scholar 

  11. Halme K, Lindfors E, Peltonen K (2004) Determination of malachite green residues in rainbow trout muscle with liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. Food Addit Contam 21:641–648

    CAS  Google Scholar 

  12. Ran H, Lin ZZ, Yao QH, Hong CY, Huang ZY (2019) Ratiometric fluorescence probe of MIPs@CdTe QDs for trace malachite green detection in fish. Anal Bioanal Chem 411:537–544

    CAS  Google Scholar 

  13. Yang J, Wu H, Wu MH, Zeng J, Lin ZZ, Chen XM, Huang ZY (2018) Simultaneous detection of malachite, leucomalachite green based on dual template CdTe@MIP via normal and synchronous fluorescence quenching. Dyes Pigm 155:171–178

    CAS  Google Scholar 

  14. Fei W, Chen F, Sun L, Li Q, Yang J, Wu Y (2014) Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles. Microchim Acta 181:419–425

    CAS  Google Scholar 

  15. Gao N, Huang J, Wang L, Feng J, Huang P, Wu F (2018) Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels. Appl Surf Sci 459:686–692

    CAS  Google Scholar 

  16. Wang J, Peng X, Li D, Jiang X, Pan Z, Chen A, Huang L, Hu J (2017) Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid. Microchim Acta 185:42

    Google Scholar 

  17. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471

    CAS  Google Scholar 

  18. Yao J, Li L, Li P, Yang M (2017) Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. Nanoscale 9:13364–13383

    CAS  Google Scholar 

  19. Hao J, Li L, Zhao W, Wu X, Xiao Y, Zhang H, Tang N, Wang X (2019) Synthesis and application of CCQDs as a novel type of environmentally friendly scale inhibitor. ACS Appl Mater Interfaces 11:9277–9282

    CAS  Google Scholar 

  20. Liao B, Long P, He B, Yi S, Liu Q, Wang R (2014) Surface grafting of fluorescent carbon nanoparticles with polystyrene via atom transfer radical polymerization. Carbon 73:155–162

    CAS  Google Scholar 

  21. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  Google Scholar 

  22. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK (2019) Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl Surf Sci 476:468–480

    CAS  Google Scholar 

  23. Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, Xiong HM (2018) Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14(22):1800612

    Google Scholar 

  24. Liu W, Shen J, Liu QQ, Yang XF, Tang H (2018) Porous MoP network structure as co-catalyst for H-2 evolution over g-C3N4 nanosheets. Appl Surf Sci 462:822–830

    CAS  Google Scholar 

  25. Singh VK, Singh V, Yadav PK, Chandra S, Bano D, Kumar V, Koch B, Talat M, Hasan SH (2018) Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr(VI) and ascorbic acid in pure aqueous solution and in living cells. New J Chem 42:12990–12997

    CAS  Google Scholar 

  26. Barbosa CDDS, Correa JR, Medeiros GA, Barreto G, Magalhaes KG, de Oliveira AL, Spencer J, Rodrigues MO, Neto BAD (2015) Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chem Eur J 21:5055–5060

    CAS  Google Scholar 

  27. Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green Synthesis of Fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714

    CAS  Google Scholar 

  28. Bano D, Kumar V, Singh VK, Hasan SH (2018) Green synthesis of fluorescent carbon quantum dots for the detection of mercury (ii) and glutathione. New J Chem 42:5814–5821

    CAS  Google Scholar 

  29. Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S (2017) Green Preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chem Eng 5:4992–5000

    CAS  Google Scholar 

  30. Liu X, Wang T, Wang W, Zhou Z, Yan Y (2019) A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J Ind Eng Chem 72:100–106

    CAS  Google Scholar 

  31. Sabet M, Mahdavi K (2019) Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl Surf Sci 463:283–291

    CAS  Google Scholar 

  32. Wu S, Li W, Zhou W, Zhan Y, Hu C, Zhuang J, Zhang H, Zhang X, Lei B, Liu Y (2018) Large-scale one-step synthesis of carbon dots from yeast extract powder and construction of carbon dots/PVA fluorescent shape memory material. Adv Opt Mater 6:1701150

    Google Scholar 

  33. Zhang X, Jiang M, Niu N, Chen Z, Li S, Liu S, Li J (2018) Natural-product-derived carbon dots: from natural products to functional materials. Chemsuschem 11:11–24

    Google Scholar 

  34. Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156

    CAS  Google Scholar 

  35. Li H, Wei X, Zhang Y, Xu Y, Lu K, Li C, Yan Y (2016) Rapid and sensitive detection of hemoglobin with gold nanoparticles based fluorescence sensor in aqueous solution. J Alloys Compd 685:820–827

    CAS  Google Scholar 

  36. Zhao T, Wang J, He J, Deng Q, Wang S (2017) One-step post-imprint modification achieve dual-function of glycoprotein fluorescent sensor by "Click Chemistry". Biosens Bioelectron 91:756–761

    CAS  Google Scholar 

  37. Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309

    CAS  Google Scholar 

  38. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    CAS  Google Scholar 

  39. Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G (2019) Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 88:1–129

    CAS  Google Scholar 

  40. Wu S, Min H, Shi W, Cheng P (2020) Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv Mater 32(3):1805871

    CAS  Google Scholar 

  41. Khandelwal G, Chandrasekhar A, Maria Joseph Raj NP, Kim SJ (2019) Metal–organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv Energy Mater 9(14):1803581

    Google Scholar 

  42. Zhang L, Wang J, Ren X, Zhang W, Zhang T, Liu X, Du T, Li T, Wang J (2018) Internally extended growth of core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(ii). J Mater Chem 6:21029–21038

    CAS  Google Scholar 

  43. Guo Z, Florea A, Jiang M, Mei Y, Zhang W, Zhang A, Săndulescu R, Jaffrezic-Renault N (2016) Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings 6:42

    Google Scholar 

  44. Liu H, Ni T, Mu L, Zhang D, Wang J, Wang S, Sun B (2018) Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens Actuators B 256:1038–1044

    CAS  Google Scholar 

  45. Liu Y, Wang R, Zhang T, Liu S, Fei T (2019) Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. J Colloid Interface Sci 541:249–257

    CAS  Google Scholar 

  46. Hou Q, Wu Y, Zhou S, Wei Y, Caro J, Wang H (2019) Ultra-tuning of the aperture size in stiffened ZIF-8_cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew Chem Int Ed 58:327–331

    CAS  Google Scholar 

  47. Kang JS, Kang J, Chung DY, Son YJ, Kim S, Kim S, Kim J, Jeong J, Lee MJ, Shin H, Park S, Yoo SJ, Ko MJ, Yoon J, Sung YE (2018) Tailoring the porosity of MOF-derived N-doped carbon electrocatalysts for highly efficient solar energy conversion. J Mater Chem 6:20170–20183

    CAS  Google Scholar 

  48. Yao S, Xue S, Peng S, Jing M, Shen X, Li T, YiLiu Z (2019) Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. Int J Energy Res 43:1892–1902

    CAS  Google Scholar 

  49. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316

    CAS  Google Scholar 

  50. Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal-organic framework for enhanced HClO sensing. ACS Appl Mater Interfaces 10:20801–20805

    CAS  Google Scholar 

  51. Xu L, Pan M, Fang G, Wang S (2019) Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens Actuators, B 286:321–327

    CAS  Google Scholar 

  52. Li Y, Ma C, Nian P, Liu H, Zhang X (2019) Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. J Membr Sci 581:344–354

    CAS  Google Scholar 

  53. Tian L, Yang X, Liu Q, Qu F, Tang H (2018) Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Appl Sur Sci 455:403–409

    CAS  Google Scholar 

  54. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range ☆. J Coll Interface Sci 26:62–69

    Google Scholar 

  55. Zhou L, Li N, Owens G, Chen Z (2019) Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem Eng J 362:628–637

    CAS  Google Scholar 

  56. Li W, Wu S, Zhang H, Zhang X, Zhuang J, Hu C, Liu Y, Lei B, Ma L, Wang X (2018) Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv Funct Mater 28(44):1804004

    Google Scholar 

  57. Zhang Y, Xie Z, Wang Z, Feng X, Wang Y, Wu A (2016) Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans 45:12653–12660

    CAS  Google Scholar 

  58. Li X, Wang W, Li Q, Lin H, Xu Y, Zhuang L (2018) Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence. Mater Des 151:89–101

    CAS  Google Scholar 

  59. Huang S, Wang L, Zhu F, Su W, Sheng J, Huang C, Xiao Q (2015) A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 5:44587–44597

    CAS  Google Scholar 

  60. Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, Xiao Q (2015) A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sens Actuators, B 221:1215–1222

    CAS  Google Scholar 

  61. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    CAS  Google Scholar 

  62. Chen Y, Rosenzweig Z (2002) Luminescent CdS Quantum dots as selective ion probes. Anal Chem 74:5132–5138

    CAS  Google Scholar 

  63. Ju YJ, Li N, Liu SG, Han L, Xiao N, Luo HQ, Li NB (2018) Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sens Actuators B 275:244–250

    CAS  Google Scholar 

  64. Gavrilenko NA, Volgina TN, Pugachev EV, Gavrilenko MA (2019) Visual determination of malachite green in sea fish samples. Food Chem 274:242–245

    CAS  Google Scholar 

  65. Wu L, Lin ZZ, Zeng J, Zhong HP, Chen XM, Huang ZY (2018) Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs. Spectrochim Acta, Part A 196:117–122

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (No. 21607013), Natural Science Foundation of Jiangsu Province (No. BK20171316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhou, Z., Wang, T. et al. Carbon dots incorporated metal–organic framework for enhancing fluorescence detection performance. J Mater Sci 55, 14153–14165 (2020). https://doi.org/10.1007/s10853-020-05027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05027-1

Navigation