Skip to main content

Advertisement

Log in

Tough, high-strength PDAAM-co-PAAM hydrogels synthesized without a crosslinking agent

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogels find a variety of uses across various fields, but their development might be limited by their high-cost, toxic chemical crosslinking and complicated reactions. To address these issues, we developed a tough, high-strength hydrogel of polydiacetone acrylamide-co-poly(acrylamide), prepared using acrylamide, diacetone acrylamide (DAAM) and ammonium persulfate in a one-step reaction. The multiple physical crosslinking networks endow hydrogel with excellent overall properties given appropriate DAAM levels. The tensile modulus, fractured strain, fractured stress and toughness of the developed D1A9 hydrogel are, respectively, as high as 0.15 MPa, 21 mm/mm, 0.71 MPa and 7 MJ/m2. Its compressive modulus under a strain of 80% is 0.088 MPa, while its shear modulus at a shear frequency of 100 Hz is 0.071 MPa. At the same time, D1A9 hydrogel exhibits a high self-recovery efficiency of 50% during two continuous cyclic tensile tests, with the efficiency increasing to 65% for hydrogel incubated at 50 °C for 2 h. Finally, cytocompatibility and excellent drug-releasing behavior of the hydrogel make it a candidate for biomedical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Sheng H, Wang X, Kong N et al (2019) Neural interfaces by hydrogels. Extreme Mech Lett 30:100510

    Article  Google Scholar 

  2. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310. https://doi.org/10.1007/s10853-015-9382-5

    Article  CAS  Google Scholar 

  3. Wang Y, Chen F, Liu Z et al (2019) A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew Chem Int Ed 58:15707–15711

    Article  CAS  Google Scholar 

  4. Wei J, Wei G, Shang Y, Zhou J, Wu C, Wang Q (2019) Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv Mater 31:e1900248

    Article  Google Scholar 

  5. Zhou X, Zhao F, Guo Y, Rosenberger B, Yu G (2019) Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 5:eaaw5484

    Article  Google Scholar 

  6. Ji X, Li Z, Liu X et al (2019) A functioning macroscopic “Rubik’s Cube” assembled via controllable dynamic covalent interactions. Adv Mater 31:1902365

    Article  CAS  Google Scholar 

  7. Gong M, Wan P, Ma D et al (2019) Flexible breathable nanomesh electronic devices for on-demand therapy. Adv Funct Mater 29:1902127

    Article  Google Scholar 

  8. More SM, Kulkarni RV, Sa B, Kayane NV (2010) Glutaraldehyde-crosslinked poly(vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. J Appl Polym Sci 116:1732–1738

    CAS  Google Scholar 

  9. Lu Z, Liu S, Le Y et al (2019) An injectable collagen–genipin–carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 218:119190

    Article  CAS  Google Scholar 

  10. Sasaki YF, Sekihashi K, Izumiyama F et al (2000) The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and USNTP carcinogenicity database. Crit Rev Toxicol 30:629–799

    Article  CAS  Google Scholar 

  11. Jia YG, Jin J, Liu S, Ren L, Luo J, Zhu XX (2018) Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host–guest recognition. Biomacromol 19:626–632

    Article  CAS  Google Scholar 

  12. Chu CW, Ravoo BJ (2017) Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host–guest interaction. Chem Commun 53:12450–12453

    Article  CAS  Google Scholar 

  13. Liu C, Yang L, Qiao L, Liu C, Zhang M, Jian X (2019) An injectable and self-healing novel chitosan hydrogel with low adamantane substitution degree. Polym Int 68:1102–1112

    Article  CAS  Google Scholar 

  14. Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J (2019) Self-healing polymeric hydrogel formed by metal–ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Comm 40:1800837

    Article  Google Scholar 

  15. Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136:6969–6977

    Article  CAS  Google Scholar 

  16. Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW (2013) Halogen-bonding-triggered supramolecular gel formation. Nat Chem 5:42–47

    Article  CAS  Google Scholar 

  17. Qiao L, Liu C, Liu C et al (2019) Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds. J Mater Sci 54:8814–8828. https://doi.org/10.1007/s10853-019-03483-y

    Article  CAS  Google Scholar 

  18. Wang S, Liu M, Gao L, Guo G, Huo Y (2019) Optimized association of short alkyl side chains enables stiff, self-recoverable, and durable shape-memory hydrogel. ACS Appl Mater Interfaces 11:19554–19564

    Article  CAS  Google Scholar 

  19. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    Article  CAS  Google Scholar 

  20. Bastings MMC, Koudstaal S, Kieltyka RE et al (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 3:70–78

    Article  CAS  Google Scholar 

  21. Dankers PYW, van Luyn MJA, Huizinga-van A, der Vlag et al (2012) Development and in vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 33:5144–5155

    Article  CAS  Google Scholar 

  22. Cui J, del Campo A (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48:9302–9304

    Article  CAS  Google Scholar 

  23. Gao F, Xu Z, Liang Q et al (2019) Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci 6:1900867

    Article  Google Scholar 

  24. Gan D, Xing W, Jiang L et al (2019) Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 10. https://doi.org/10.1038/s41467-019-09351-2

  25. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453

    Article  CAS  Google Scholar 

  26. Gao G, Wang Z, Xu D et al (2018) Snap-buckling motivated controllable jumping of thermo-responsive hydrogel bilayers. ACS Appl Mater Interfaces 10:41724–41731

    Article  CAS  Google Scholar 

  27. Wu F, Chen L, Li Y, Lee KI, Fei B (2017) Super-tough hydrogels from shape-memory polyurethane with wide-adjustable mechanical properties. J Mater Sci 52:4421–4434. https://doi.org/10.1007/s10853-016-0689-7

    Article  CAS  Google Scholar 

  28. Laux P, Riebeling C, Booth AM et al (2018) Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ Sci Nano 5:48–63

    Article  CAS  Google Scholar 

  29. Xia S, Song S, Ren X, Gao G (2017) Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core–shell inorganic–organic hybrid latex particles. Soft Matter 13:6059–6067

    Article  CAS  Google Scholar 

  30. Yang J, Deng L-H, Han C-R et al (2013) Synthetic and viscoelastic behaviors of silicananoparticle reinforced poly(acrylamide) core–shell nanocomposite hydrogels. Soft Matter 9:1220–1230

    Article  CAS  Google Scholar 

  31. Sun TL, Kurokawa T, Kuroda S et al (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    Article  CAS  Google Scholar 

  32. Bai R, Yang J, Suo Z (2019) Fatigue of hydrogels. Eur J Mech A Solids 74:337–370

    Article  Google Scholar 

  33. Patyukova E, Rottreau T, Evans R, Topham PD, Greenall MJ (2018) Hydrogen bonding aggregation in acrylamide: theory and experiment. Macromolecules 51:7032–7043

    Article  CAS  Google Scholar 

  34. McCormick CL, Chen GS (1984) Water-soluble copolymers. 9. Copolymers of acrylamide with N-(1,1-dimethyl-3-oxybutyl) acrylamide and N,N-dimethylacrylamide-synthesis and characterization. J Polym Sci A Polym Chem 22:3633–3647

    Article  CAS  Google Scholar 

  35. Zhou W, Qu Q, Xu Y, An Z (2015) Aqueous polymerization-induced self-assembly for the synthesis of ketone-functionalized nano-objects with low polydispersity. ACS Macro Lett 4:495–499

    Article  CAS  Google Scholar 

  36. Wang X, Figg CA, Lv X, Yang Y, Sumerlin BS, An Z (2017) Star architecture promoting morphological transitions during polymerization-induced self-assembly. ACS Macro Lett 6:337–342

    Article  CAS  Google Scholar 

  37. McCormick CL, Hutchinson BH, Morgan SE (1987) Water-soluble copolymers. 16. Studies of the behavior of acrylamide-N-(1,1-dimethyl-3-oxybutyl) acrylamide copolymers in aqueous salt-solutions. Macromol Chem 188:357–370

    Article  CAS  Google Scholar 

  38. King DR, Sun TL, Huang Y et al (2015) Extremely tough composites from fabric reinforced polyampholyte hydrogels. Mater Horiz 2:584–591

    Article  CAS  Google Scholar 

  39. Xu B, Zhang Y, Liu W (2015) Hydrogen-bonding toughened hydrogels and emerging CO2-responsive shape memory effect. Macromol Rapid Comm 36:1585–1591

    Article  CAS  Google Scholar 

  40. Phogat K, Kanwar S, Nayak D, Mathur N, Ghosh SB, Bandyopadhyay-Ghosh S (2020) Nano-enabled poly(vinyl alcohol) based injectable bio-nanocomposite hydrogel scaffolds. J Appl Polym Sci 137:48789

    Article  CAS  Google Scholar 

  41. Bi S, Wang P, Hu S et al (2019) Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr Polym 224:115176

    Article  CAS  Google Scholar 

  42. Gao Z, Li Y, Shang X, Hu W, Gao G, Duan L (2020) Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Mater Sci Eng C Mater 106:110168

    Article  CAS  Google Scholar 

  43. Wang B, Liu L, Liao L (2019) Light and ferric ion responsive fluorochromic hydrogels with high strength and self-healing ability. Polym Chem 10:6481–6488

    Article  CAS  Google Scholar 

  44. Zhang Q, Wu M, Hu X et al (2019) A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect. Macromol Chem Phys 221:1900320

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Dalian Science and Technology Innovation Fund (No. 2018J12GX055) and National Natural Science Foundation of China (No. 51503025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Liu, C., Liu, C. et al. Tough, high-strength PDAAM-co-PAAM hydrogels synthesized without a crosslinking agent. J Mater Sci 55, 10878–10895 (2020). https://doi.org/10.1007/s10853-020-04728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04728-x

Navigation