Skip to main content
Log in

A ascorbic acid-imprinted poly(o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A flexible ascorbic acid (AA)-imprinted poly(o-phenylenediamine) (ploy(o-PD))/zeolite imidazole frameworks-67 (ZIF-67)/carbon cloth (CC) electrode was prepared for electrochemical sensing AA. The flexible AA-imprinted poly(o-PD)/ZIF-67/CC electrode was prepared by growing ZIF-67 on flexible CC, electropolymerization of o-PD with AA on ZIF-67/CC and eluting template molecules AA. The results showed that the spherical ZIF-67 crystals were arranged evenly and firmly on the fibers of CC surface. The diameter of spherical ZIF-67 crystals was approximately 500–600 nm, and the spherical ZIF-67 crystals catalyzed the oxidation of AA well. A layer of poly(o-PD) with AA-imprinted pores was covered on the ZIF-67/CC electrode, so the AA-imprinted poly(o-PD)/ZIF-67/CC electrode exhibited better selectivity toward AA detection and good stability. The molecularly imprinted sensor exhibits high sensitivity, and the sensitivity could reach 959.9 μA/mM−1 cm−2, the detection limit was 0.019 μM, and the concentration range of AA was 0.057 μM–11.4 0 mM. The AA-imprinted poly(o-PD)/ZIF-67/CC electrode also showed higher stability and repeatability. The results proved that the spherical ZIF-67 crystals were good electrode materials for electrochemical AA biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Qi SP, Zhao B, Tang HP, Jiang XQ (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402

    Article  CAS  Google Scholar 

  2. Song YG, Gong CC, Su D, Shen Y, Song YH, Wang L (2016) A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on a three-dimensional porous carbon electrode. Anal Methods 8:2290–2296

    Article  CAS  Google Scholar 

  3. Sajid M, Nazal MK, Mansha M (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal Chem 76:15–29

    Article  CAS  Google Scholar 

  4. Sajid MM, Khan SB, Shad NA, Amin N, Zhang Z (2018) Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv 8:23489–23498

    Article  CAS  Google Scholar 

  5. Zhang LJ, Wang GH, Wu D, Xiong C, Zheng L, Ding YS, Qiu LZ (2018) Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosens Bioelectron 100:235–241

    Article  CAS  Google Scholar 

  6. Hei YS, Li XQ, Zhou X, Hassan J, Zhang SY, Zhou M (2018) Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal Chim Acta 1029:15–23

    Article  CAS  Google Scholar 

  7. Devendiran D, Kumar KK, Narayanan SS (2018) Amperometric Determination of ascorbic acid and riboflavin using ferrocene/thionin bimediator modified electrode. Int J S Res Sci Technol 4:628–634

    Google Scholar 

  8. Scremin J, Barbosa ECM, Salamanca-Neto CAR, Camargo PHC, Sartori ER (2018) Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2 gold nanoparticles integrated into carbon nanotubes. Microchim Acta 185:251

    Article  CAS  Google Scholar 

  9. Avramidis P, Nikolaou K, Bekiari V (2015) Total organic carbon and total nitrogen in sediments and soils: a comparison of the wet oxidation–titration method with the combustion-infrared method. Agric Agric Sci Procedia 4:425–430

    Google Scholar 

  10. Xia Z, Li N, Zhang H (2012) Direct electrochemical determination of ascorbic acid by a cobalt (II) tetra-neopentyloxy phthalocyanine-multi-walled carbon nanotubes glassy carbon electrode. J Mater Sci 47(6):2731–2735. https://doi.org/10.1007/s10853-011-6099-y

    Article  CAS  Google Scholar 

  11. Badea M, Chiperea C, Balan M, Floroian L, Restani P, Marty JL, Taus N (2018) New approaches for electrochemical detection of ascorbic acid. Farmacia 66:83–87

    CAS  Google Scholar 

  12. Van Toi P, Pouplin T, Tho NDK, Phuong PN, Chau TTH, Thuong NTT, Thwaites GN (2017) High-performance liquid chromatography with time-programmed fluorescence detection for the quantification of Levofloxacin in human plasma and cerebrospinal fluid in adults with tuberculous meningitis. J Chromatogr B 1061:256–262

    Google Scholar 

  13. Dastkhoon M, Ghaedi M, Asfaram A, Arabi M, Ostovan A, Goudarzi A (2017) Cu@SnS/SnO2 nanoparticles as novel sorbent for dispersive micro solid phase extraction of atorvastatin in human plasma and urine samples by high-performance liquid chromatography with UV detection: application of central composite design (CCD). Ultrason Sonochem 36:42–49

    Article  CAS  Google Scholar 

  14. Hameed IH, Ibraheam IA, Kadhim HJ (2015) Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves. J Pharmacogn Phytother 7:90–106

    Article  CAS  Google Scholar 

  15. Robinson N, Lang L, Kane E, Knott C (2018) Quantifying free simple sugars in orangutan foods using spectrophotometry: Implications for orangutan feeding ecology. In: 87th annual meeting of the American Association of physical anthropologists 2018

  16. Klepárník K (2015) Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis 36:159–178

    Article  CAS  Google Scholar 

  17. Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. Anal Chem 79:114–126

    CAS  Google Scholar 

  18. Saraf M, Rajakb R, Mobin SM (2016) A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16455

    Article  CAS  Google Scholar 

  19. Zheng Y, Ma ZF (2019) Multifunctionalized ZIFs nanoprobe-initiated tandem reaction for signal amplified electrochemical immunoassay of carbohydrate antigen 24–2. Biosens Bioelectron 129:42–49

    Article  CAS  Google Scholar 

  20. Li Y, Zhang PP, Ouyang ZF, Zhang MF, Lin ZJ, Li JF, Su ZQ, Wei G (2016) Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing. Adv Funct Mater 26:2122–2134

    Article  CAS  Google Scholar 

  21. Zhao CJ, Ma XH, Li JP (2017) An insulin molecularly imprinted electrochemical sensor based on epitope imprinting. Chin J Anal Chem 45:1360–1366

    Article  CAS  Google Scholar 

  22. Diltemiz SE, Keçili R, Ersöz A, Say R (2017) Molecular imprinting technology in quartz crystal microbalance (QCM) sensors. Sensors 17:454–472

    Article  Google Scholar 

  23. Wackerlig J, Schirhagl R (2015) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261

    Article  CAS  Google Scholar 

  24. Iskierko Z, Sharma PS, Prochowicz D, Fronc K, Souza FD, Toczydłowska D, Noworyta K (2016) Molecularly imprinted polymer (MIP) film with improved surface area developed by using metal-organic framework (MOF) for sensitive lipocalin (NGAL) determination. ACS Appl Mater Interfaces 8:19860–19865

    Article  CAS  Google Scholar 

  25. Zhang W, Jiang XF, Wang XB, Kaneti YV, Chen YX, Liu J, Hu M (2017) Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed 56:8435–8440

    Article  CAS  Google Scholar 

  26. Yan CL, Liu X, Zhang RX, Chen YJ, Wang GK (2016) A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. J Electroanal Chem 780:276–281

    Article  CAS  Google Scholar 

  27. Xu J, Wang Q, Wang X (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@ RuO2 nanosheet arrays on carbon cloth. ACS Nano 7:5453–5462

    Article  CAS  Google Scholar 

  28. Wang J, Yang M, Zheng Z (2019) Design, preparation and assembly of flexible electrode based on carbon materials. Chin Sci Bull 64:514–531

    Article  Google Scholar 

  29. Zhang G, Hou S, Zhang H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405

    Article  CAS  Google Scholar 

  30. Li FW, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem Int Ed 56:505–509

    Article  CAS  Google Scholar 

  31. Guan C, Zhao W, Hu YT, Ke QQ, Li X, Zhang H, Wang J (2016) High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Energy Mater 6:1601034

    Article  CAS  Google Scholar 

  32. Santana ER, de Lima CA, Piovesan JV, Spinelli A (2017) An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sensors Actuators B 240:487–496

    Article  CAS  Google Scholar 

  33. Peng H, Liu Y, Yuan L, Zhang JS, Ruan RS (2017) Progress in preparation of silver nanoparticle materials. Xiandai Huagong/Modern Chem Ind 37:23–28

    Google Scholar 

  34. Armada-Moreira A, Taipaleenmäki E, Baekgaard-Laursen M, Schattling PS, Sebastião AM, Vaz SH, Städler B (2017) Platinum nanoparticle-based microreactors as support for neuroblastoma cells. ACS Appl Mater Interfaces 10:7581–7592

    Article  CAS  Google Scholar 

  35. Catherine L, Pluchery O (2017) Gold nanoparticles for physics, chemistry and biology. World Scientific, Singapore

    Google Scholar 

  36. Miao LF, Ye Y, Xu LJ, Peng CW, Peng BX, Li P, Chen SH (2018) Leafy copper-cobalt nanostructures/three-dimensional porous carbon for glucose sensing. Ionics 24:3199–3207

    Article  CAS  Google Scholar 

  37. Huang YB, Liang J, Wang XS, Cao R (2017) Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157

    Article  CAS  Google Scholar 

  38. Nie XY, Sun SY, Sun Z, Song XF, Yu JG (2017) Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403:128–135

    Article  CAS  Google Scholar 

  39. Wang L, Han YZ, Feng X, Zhou JW, Qi PF, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  40. Yan Y, Jurícek M, Coudert F-X, Vermeulen NA, Grunder S, Dailly A, Lewis W, Blake AJ, Stoddart JF, Schröder M (2016) Non-interpenetrated metal–organic frameworks based on copper (II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure, and gas adsorption. J Am Chem Soc 138:3371–3381

    Article  CAS  Google Scholar 

  41. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6:1600423

    Article  CAS  Google Scholar 

  42. Wen Y, Wei Z, Ma C (2019) MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution. Nanomaterials 9:775–784

    Article  CAS  Google Scholar 

  43. Wang L, Yang H, Pan GX, Miao LF, Chen SH, Song YH (2017) Polyaniline-carbon nanotubes@zeolite imidazolate framework 67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23

    Article  CAS  Google Scholar 

  44. Karimian N, Stortini AM, Moretto LM, Costantino C, Bogialli S, Ugo P (2018) Electrochemosensor for trace analysis of perfluorooctane sulfonate in water based on a molecularly imprinted poly o-phenylenediamine polymer. ACS Sens 3:1291–1298

    Article  CAS  Google Scholar 

  45. Ge X, Li Z, Yin L (2017) Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32:117–124

    Article  CAS  Google Scholar 

  46. Zhang WQ, Duan DW, Liu SQ, Zhang YS, Leng LP, Li XL, Chen N, Zhang YP (2018) Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens Bioelectron 118:129–136

    Article  CAS  Google Scholar 

  47. Reppert M, Tokmakoff A (2016) Computational amide I 2D IR spectroscopy as a probe of protein structure and dynamics. Annu Rev Phys Chem 67:359–386

    Article  CAS  Google Scholar 

  48. Gong S, Cheng WL (2017) One-dimensional nanomaterials for soft electronics. Adv Electron Mater 3:1600314

    Article  CAS  Google Scholar 

  49. Malitesta C, Losito I, Zambonin PG (2017) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71:1366–1370

    Article  Google Scholar 

  50. Keeley GP, Neill AO, McEvoy N, Peltekis N, Colemanac JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20:7864–7869

    Article  CAS  Google Scholar 

  51. Wang SY, Zhang W, Zhong X, Chai YQ, Yuan R (2015) Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods 7:1471–1477

    Article  CAS  Google Scholar 

  52. Zhang ZX, Li YY, Xu JK, Wen YP (2018) Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J Electroanal Chem 814:153–160

    Article  CAS  Google Scholar 

  53. Roy AK, Dhand C, Malhotra BD (2011) Molecularly imprinted polyaniline film for ascorbic acid detection. J Mol Recognit 24:700–706

    Article  CAS  Google Scholar 

  54. Pandey I, Kant R (2016) Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode. Biosens Bioelectron 77:715–724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21465014, 21964010 and 21765009) and the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee (KJLD14023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Yonghai Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, L., Xu, L. et al. A ascorbic acid-imprinted poly(o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid. J Mater Sci 55, 9425–9435 (2020). https://doi.org/10.1007/s10853-020-04687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04687-3

Navigation