Skip to main content

Advertisement

Log in

Mussel-mimetic polymer underwater adhesives with l-Dopa functionality: influencing adhesion properties and simplified operation procedures

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When it comes to bonding in an aqueous environment, intertidal marine organisms such as mussels, sandcastle worms, barnacles and polychaetes are providing inspiration for the assembly of synthetic molecules into the polymeric adhesives. Although intense demands in various life or industrial applications and many mussel-inspired systems have been shown to develop coatings and hydrogels, exploring the mimetic mussel adhesive system through the control of composition and polymer molecular weight is demonstrated less often. In this report, we showed a simple approach to synthesize mussel-inspired adhesive, P(N-butyl acrylate-co-l-Dopa-methacrylate anhydride), which possesses characteristics of simple synthesis, easy-using, no extra-crosslinker need, and excellent adhesion behaviour on diverse substrates. Adhesion behaviour was examined using low- and high-surface-energy substrates (e.g. PTFE and steel, respectively). Furthermore, the fabricated adhesives exhibited excellent underwater adhesive behaviour for steel in various aqueous solutions, including ion ((IO4) and Mn3+), acid and alkali solutions (pH = 4, 6.7 and 8, respectively). The outstanding fabricated adhesives take advantage of the catechol functionality and wettability of the resulting polymer. These insights should help us to design next-generation underwater adhesive systems as well as open up a number of future research designs for mussel-inspired adhesives with performance not accessed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figuure 7

Similar content being viewed by others

References

  1. Park KH, Seong KY, Yang SY, Seo S (2017) Advances in medical adhesives inspired by aquatic organisms' adhesion. Biomater Res 21:16. https://doi.org/10.1186/s40824-017-0101-y

    Article  CAS  Google Scholar 

  2. Moulay S (2018) Recent trends in mussel-inspired catechol-containing polymers (a review). Orient J Chem 34:1153–1197

    Article  CAS  Google Scholar 

  3. Bhagat V, Becker ML (2017) Degradable adhesives for surgery and tissue engineering. Biomacromolecules 18:3009–3039

    Article  CAS  Google Scholar 

  4. Zhang H, Zhao T, Newland B, Duffy P, Annaidh AN, O'Cearbhaill ED, Wang W (2015) On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. J Mater Chem B 3:6420–6428

    Article  CAS  Google Scholar 

  5. White JD, Wilker JJ (2011) Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 44:5085–5088

    Article  CAS  Google Scholar 

  6. Matos-Pérez CR, White JD, Wilker JJ (2012) Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 134:9498–9505

    Article  CAS  Google Scholar 

  7. Yang M, Rosentrater KA (2019) Techno-economic analysis of the production process of structural bio-adhesive derived from glycerol. J Clean Prod 228:388–398

    Article  CAS  Google Scholar 

  8. Heinzmann C, Weder C, Espinosa LMD (2016) Supramolecular polymer adhesives: advanced materials inspired by nature. Chem Soc Rev 45:342–358

    Article  CAS  Google Scholar 

  9. Shao H, Stewart RJ (2010) Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv Mater 22:729–733

    Article  CAS  Google Scholar 

  10. Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205

    Article  CAS  Google Scholar 

  11. Zhou J, Wan Y, Liu N, Yin H, Li B, Sun D, Ran Q (2018) Epoxy adhesive with high underwater adhesion and stability based on low viscosity modified Mannich bases. J Appl Polym Sci. https://doi.org/10.1002/app.45688

    Article  Google Scholar 

  12. Brennan MJ, Kilbride BF, Wilker JJ, Liu JC (2017) A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials 124:116–125

    Article  CAS  Google Scholar 

  13. Yang B, Lim C, Dong SH, Cha HJ (2016) Switch of surface adhesion to cohesion by Dopa-Fe3+ complexation in response to microenvironment at the mussel plaque-substrate interface. J Phys Chem B 120:7265–7274

    Article  CAS  Google Scholar 

  14. Sparks BJ, Hoff EFT, Hayes LTP, Patton DL (2012) Mussel-inspired thiol-ene polymer networks: influencing network properties and adhesion with catechol functionality. Chem Mater 24:3633–3642

    Article  CAS  Google Scholar 

  15. Moulay S (2014) Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym Rev 54:436–513

    Article  CAS  Google Scholar 

  16. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341

    Article  CAS  Google Scholar 

  17. Hwang DS, Yoo HJ, Jun JH, Moon WK, Cha HJ (2004) Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol 70:3352–3359

    Article  CAS  Google Scholar 

  18. Lu Q, Danner E, Waite JH, Israelachvili JN, Dong SH (2013) Adhesion ofmussel foot proteins to different substrate surfaces. J R Soc Interface 10:20120759

    Article  CAS  Google Scholar 

  19. Waite JH (2017) Mussel adhesion–essential footwork. J Exp Biol 220:517–530

    Article  Google Scholar 

  20. Zhang X, Liu H, Yue L, He J, Bai Y (2019) Mussel-inspired polymer: a photocurable and degradable polymer network for adhesives. Polym Degrad Stabil 167:130–138

    Article  CAS  Google Scholar 

  21. Yu J, Wei W, Danner E, Ashley RK, Israelachvili JN, Waite JH (2011) Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat Chem Biol 7:588–590

    Article  CAS  Google Scholar 

  22. Wilker JJ (2011) Redox and adhesion on the rocks. Nat Chem Biol 7:579–580

    Article  CAS  Google Scholar 

  23. Lana-Villarreal T, Rodes A, Pérez JM, Gómez R (2005) A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution. J Am Chem Soc 127:12601–12611

    Article  CAS  Google Scholar 

  24. Mian SA, Saha LC, Jang J, Wang L, Gao X, Nagase S (2010) Density functional theory study of catechol adhesion on silica surfaces. J Phys Chem C 114:20793–20800

    Article  CAS  Google Scholar 

  25. Yu M, Jungyeon Hwang A, Deming TJ (1999) Role of l-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826

    Article  CAS  Google Scholar 

  26. Wei W, Jing Y, Gebbie MA, Tan Y, Martinez RNR, Israelachvili JN, Herbert WJ (2015) Bridging adhesion of mussel-inspired peptides: role of charge, chain length, and surface type. Langmuir 31:1105–1112

    Article  CAS  Google Scholar 

  27. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Nat Acad Sci 103:12999–13003

    Article  CAS  Google Scholar 

  28. Bagheri H, Banihashemi S, Zandian FK (2016) Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183:1–8

    Article  CAS  Google Scholar 

  29. Li L, Li Y, Luo X, Deng J, Yang W (2010) Helical poly(-propargylamide)s with functional catechol groups: synthesis and adsorption of metal ions in aqueous solution. React Funct Polym 70:938–943

    Article  CAS  Google Scholar 

  30. Zhao Q, Lee DW, Ahn BK, Seo S, Kaufman Y, Israelachvili JN, Waite JH (2016) Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat Mater 15:407–412

    Article  CAS  Google Scholar 

  31. Han L, Yan L, Wang K, Fang L, Zhang H, Tang Y, Ding Y, Weng L-T, Xu J, Weng J, Liu Y, Ren F, Lu X (2017) Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. https://doi.org/10.1038/am.2017.33

    Article  Google Scholar 

  32. Yuk H, Zhang T, Parada GA, Liu X, Zhao X (2016) Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun. https://doi.org/10.1038/ncomms12028

    Article  Google Scholar 

  33. Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Han DK, Cha HJ (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15:1579–1585

    Article  CAS  Google Scholar 

  34. Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W (2018) Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 78:47–55

    Article  CAS  Google Scholar 

  35. Pechey A, Elwood CN, Wignall GR, Dalsin JL, Lee BP, Vanjecek M, Welch I, Ko R, Razvi H, Cadieux PA (2009) Anti-adhesive coating and clearance of device associated uropathogenic Escherichia coli cystitis. J Urol 182:1628–1636

    Article  CAS  Google Scholar 

  36. Yuan S, Wan D, Liang B, Pehkonen SO, Ting YP, Neoh KG, Kang ET (2011) Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)−stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir 27:2761–2774

    Article  CAS  Google Scholar 

  37. Westwood G, Horton TN, Wilker JJ (2007) Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 40:3960–3964

    Article  CAS  Google Scholar 

  38. Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X (2018) Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater. https://doi.org/10.1002/adfm.201704195

    Article  Google Scholar 

  39. Zhang C, Xiang L, Zhang J, Gong L, Han L, Xu ZK, Zeng H (2019) Tough and alkaline-resistant mussel-inspired wet adhesion with surface salt displacement via polydopamine/amine synergy. Langmuir 35:5257–5263

    Article  CAS  Google Scholar 

  40. Chen J, Peng Q, Thundat T, Zeng H (2019) Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem Mater 31:4553–4563

    Article  CAS  Google Scholar 

  41. Lee BP, Huang K, Nunalee FN, Shull KR, Messersmith PB (2004) Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. J Biomater Sci, Polym Ed 15:449–464

    Article  CAS  Google Scholar 

  42. Chung H, Glass P, Pothen JM, Sitti M, Washburn NR (2011) Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. Biomacromolecules 12:342–347

    Article  CAS  Google Scholar 

  43. Sogawa H, Ifuku N, Numata K (2019) 3,4-Dihydroxyphenylalanine (DOPA)-containing silk fibroin: its enzymatic synthesis and adhesion properties. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.8b01309

    Article  Google Scholar 

  44. Zhan K, Kim C, Sung K, Ejima H, Yoshie N (2017) Tunicate-inspired gallol polymers for underwater adhesive: a comparative study of catechol and gallol. Biomacromol 18:2959–2966

    Article  CAS  Google Scholar 

  45. North MA, Del Grosso CA, Wilker JJ (2017) High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl Mater Interfaces 9:7866–7872

    Article  CAS  Google Scholar 

  46. Zhang X, He J, Yue L, Liu H, Bai Y (2018) The heat-resistance of acrylic pressure-sensitive adhesives based on commercial curing agents and UV/heat curing systems. J Appl Polym Sci 136:47310. https://doi.org/10.1002/app.47310

    Article  CAS  Google Scholar 

  47. Baik S, Kim DW, Park Y, Lee T-J, Ho Bhang S, Pang C (2017) A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546:396–400

    Article  CAS  Google Scholar 

  48. Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38:236–270

    Article  CAS  Google Scholar 

  49. Sagert J, Sun C, waite JH (2006) Chemical subtleties of mussel and polychaete holdfasts. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin, pp 125–143

    Chapter  Google Scholar 

  50. Choi GY, Zurawsky W, Ulman A (1999) Molecular weight effects in adhesion. Langmuir 15:8447–8450

    Article  CAS  Google Scholar 

  51. Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9:661–681

    Article  CAS  Google Scholar 

  52. Doraiswamy A, Dunaway TM, Wilker JJ, Narayan RJ (2009) Inkjet printing of bioadhesives. J Biomed Mater Res Part B 89B:28–35

    Article  CAS  Google Scholar 

  53. Lee J-H, Lee T-H, Shim K-S, Park J-W, Kim H-J, Kim Y, Jung S (2017) Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int J Adhes Adhes 74:137–143

    Article  CAS  Google Scholar 

  54. Czech Z (2003) Crosslinking of pressure sensitive adhesive based on water-borne acrylate. Polym Int 52:347–357

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20171146) and Innovation Ability Construction Plan of Jiangsu Province, China (No. BM2017006). The authors would also like to express gratitude to Harbin Institute of Technology and Wuxi HIT New Material Research Institute co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmei He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, H., Yue, L. et al. Mussel-mimetic polymer underwater adhesives with l-Dopa functionality: influencing adhesion properties and simplified operation procedures. J Mater Sci 55, 7981–7997 (2020). https://doi.org/10.1007/s10853-020-04572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04572-z

Navigation