Skip to main content
Log in

Formation mechanism and applications of cenospheres: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In thermal power plants, pulverized coal combusts to give an intricate composition of anthropogenic materials such as fly ash (coal). These materials are a major threat to environmental (air and water, etc.) pollution if dispose of to landfill sites and rivers. Since the last two decades, research and efforts are going on to reduce production and derivation of potentially valuable materials from coal fly ash such as cenosphere. Cenosphere is a low density, chemically inert and spherical material filled with air/inert gas (either nitrogen or carbon dioxide). Cenosphere is considered to be the most important fraction of fly ash as it is being used in different industries due to its condescending properties such as high workability, thermal resistance, compressive strength and low conductivity, bulk density. This review discuses the extraction of cenosphere from fly ash, its characterization (physical and chemical) and applications in different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Reproduced by permission of The Royal Society of Chemistry

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Al-Ghussain L (2019) Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy 38(1):13–21. https://doi.org/10.1002/ep.13041

    Article  CAS  Google Scholar 

  2. Liu Y, Tang H, Muhammad A, Huang G (2019) Emission mechanism and reduction countermeasures of agricultural greenhouse gases—a review. Greenh Gases Sci Technol 9(2):160–174. https://doi.org/10.1155/2019/7523492

    Article  CAS  Google Scholar 

  3. Fan J, Hong H, Jin H (2019) Life cycle global warming impact of CO2 capture by in situ gasification chemical looping combustion using ilmenite oxygen carriers. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.06.082

    Article  Google Scholar 

  4. Raza MY, Shah MTS (2019) Analysis of coal-related energy consumption in Pakistan: an alternative energy resource to fuel economic development. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00468-4

    Article  Google Scholar 

  5. Song H, Xie W, Liu J, Cheng F, Gasem KA, Fan M (2018) Effect of surfactants on the properties of a gas-sealing coating modified with fly ash and cement. J Mater Sci 53(21):15142–15156. https://doi.org/10.1007/s10853-018-2679-4

    Article  CAS  Google Scholar 

  6. Council NR (2007) National Research Council Coal: research and development to support national energy policy. National Academies Press, Washington, DC. https://doi.org/10.17226/11977

    Book  Google Scholar 

  7. Rani R, Jain MK (2019) Hydraulic transportation of coal combustion products for mine fill. Part Sci Technol 37(1):123–129. https://doi.org/10.1080/02726351.2017.1352634

    Article  CAS  Google Scholar 

  8. Temuujin J, Surenjav E, Ruescher CH, Vahlbruch J (2019) Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 216:866–882. https://doi.org/10.1016/j.powtec.2019.05.037

    Article  CAS  Google Scholar 

  9. Yu J, Li X, Fleming D, Meng Z, Wang D, Tahmasebi A (2012) Analysis on characteristics of fly ash from coal fired power stations. Energy Procedia 17:3–9. https://doi.org/10.1016/j.egypro.2012.02.054

    Article  CAS  Google Scholar 

  10. Gollakota AR, Volli V, Shu C-M (2019) Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672:951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337

    Article  CAS  Google Scholar 

  11. Vengosh A, Cowan EA, Coyte RM, Kondash AJ, Wang Z, Brandt JE, Dwyer GS (2019) Evidence for unmonitored coal ash spills in Sutton Lake, North Carolina: implications for contamination of lake ecosystems. Sci Total Environ 686:1090–1103. https://doi.org/10.1016/j.scitotenv.2019.05.188

    Article  CAS  Google Scholar 

  12. Sahu S, Bhangare R, Ajmal P, Sharma S, Pandit G, Puranik V (2009) Characterization and quantification of persistent organic pollutants in fly ash from coal fueled thermal power stations in India. Microchem J 92(1):92–96. https://doi.org/10.1016/j.microc.2009.02.003

    Article  CAS  Google Scholar 

  13. Nagarajan R, Thirumalaisamy S, Lakshumanan E (2012) Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of Erode City, Tamil Nadu, India. Iran J Environ Health Sci Eng 9(1):35. https://doi.org/10.1186/1735-2746-9-35

    Article  CAS  Google Scholar 

  14. Ge JC, Kim JY, Yoon SK, Choi NJ (2019) Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances. Fuel 237:236–244. https://doi.org/10.1016/j.fuel.2018.09.068

    Article  CAS  Google Scholar 

  15. Pandey V, Ray M, Kumar V (2019) Assessment of water-quality parameters of groundwater contaminated by fly ash leachate near Koradi Thermal Power Plant, Nagpur. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06167-x

    Article  Google Scholar 

  16. Ranjbar N, Kuenzel C (2017) Cenospheres: a review. Fuel 207:1–12. https://doi.org/10.1016/j.fuel.2017.06.059

    Article  CAS  Google Scholar 

  17. Basu M, Pande M, Bhadoria P, Mahapatra S (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19(10):1173–1186. https://doi.org/10.1016/j.pnsc.2008.12.006

    Article  CAS  Google Scholar 

  18. Woszuk A, Bandura L, Franus W (2019) Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J Clean Prod 235:493–502. https://doi.org/10.1016/j.jclepro.2019.06.353

    Article  Google Scholar 

  19. Valeev D, Kunilova I, Alpatov A, Mikhailova A, Goldberg M, Kondratiev A (2019) Complex utilisation of ekibastuz brown coal fly ash: iron and carbon separation and aluminum extraction. J Clean Prod 218:192–201. https://doi.org/10.1016/j.jclepro.2019.01.342

    Article  CAS  Google Scholar 

  20. Valeev D, Kunilova I, Alpatov A, Varnavskaya A, Ju D (2019) Magnetite and carbon extraction from coal fly ash using magnetic separation and flotation methods. Minerals 9(5):320. https://doi.org/10.3390/min9050320

    Article  Google Scholar 

  21. Skousen J, Ziemkiewicz P, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosyst Eng 15(1):71–83. https://doi.org/10.1080/12269328.2012.676258

    Article  Google Scholar 

  22. Ge J, Yoon S, Choi N (2018) Application of fly ash as an adsorbent for removal of air and water pollutants. Appl Sci 8(7):1116. https://doi.org/10.3390/app8071116

    Article  CAS  Google Scholar 

  23. Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42(19):7055–7063. https://doi.org/10.1021/es801312m

    Article  CAS  Google Scholar 

  24. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  25. Blissett R, Rowson N (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23. https://doi.org/10.1016/j.fuel.2012.03.024

    Article  CAS  Google Scholar 

  26. Putilov V, Putilova I (2015) The best available and perspective nature protection technologies in the Russian power industry. http://osi.ecopower.ru/en/ash-handling. Accessed 13 June 2019

  27. Heidrich C (2002) Ash utilization—an Australian perspective. In: International ash utilization symposium center for applied energy research, University of Kentucky

  28. Yao Z, Ji X, Sarker P, Tang J, Ge L, Xia M, Xi Y (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  29. Hanif A, Lu Z, Li Z (2017) Utilization of fly ash cenosphere as lightweight filler in cement-based composites—a review. Constr Build Mater 144:373–384. https://doi.org/10.1016/j.conbuildmat.2017.03.188

    Article  CAS  Google Scholar 

  30. Torrey S (1978) Coal ash utilization. Fly ash, bottom ash, and slag, 1st edn. Noyes Data Corporation, Park Ridge

    Google Scholar 

  31. Yoriya S, Intana T, Tepsri P (2019) Separation of cenospheres from lignite fly ash using acetone–water mixture. Appl Sci 9(18):3792. https://doi.org/10.3390/app9183792

    Article  Google Scholar 

  32. Senthamarai Kannan K, Andal L, Shanmugasundaram M (2016) An investigation on strength development of cement with cenosphere and silica fume as pozzolanic replacement. Adv Mater Sci Eng. https://doi.org/10.1155/2016/9367619

    Article  Google Scholar 

  33. Ngu L-n, Wu H, Zhang D-k (2007) Characterization of ash cenospheres in fly ash from Australian power stations. Energy Fuels 21(6):3437–3445. https://doi.org/10.1021/ef700340k

    Article  CAS  Google Scholar 

  34. Fenelonov VB, Mel’gunov MS, Parmon VN (2010) The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plans. KONA Powder Part J 28:189–208. https://doi.org/10.14356/kona.2010017

    Article  CAS  Google Scholar 

  35. Sear LK (2001) Properties and use of coal fly ash: a valuable industrial by-product, 1st edn. Thomas Telford, London

    Book  Google Scholar 

  36. Heiken G, Wohletz K (1985) Volcanic ash, 1st edn. University Presses of California and Harvard & MIT, Chicago and London

    Google Scholar 

  37. Gurupira T, Jones CL, Howard A, Lockert C, Wandell T, Stencel JM (2001) New products from coal combustion ash: selective extraction of particles with density. In: International ash utilization symposium

  38. Sideris K, Justnes H, Soutsos M, Sui T (2018) Fly ash. In: De Belie N, Soutsos M, Gruyaert E (eds) Properties of fresh and hardened concrete containing supplementary cementitious materials. Springer, Berlin, pp 55–98. https://doi.org/10.1007/978-3-319-70606-1_2

    Chapter  Google Scholar 

  39. Lauf RJ (1981) Cenospheres in fly ash and conditions favouring their formation. Fuel 60:1177–1179. https://doi.org/10.1016/0016-2361(81)90079-X

    Article  CAS  Google Scholar 

  40. Jiang L, Elbaz AM, Guida P, Al-Noman SM, AlGhamdi IA, Saxena S, Roberts WL (2019) cenosphere formation during single-droplet combustion of heavy fuel oil. Energy Fuels 33(2):1570–1581. https://doi.org/10.1021/acs.energyfuels.8b03632

    Article  CAS  Google Scholar 

  41. Chock DP, Winkler SL, Chen C (2000) A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. J Air Waste Manag Assoc 50(8):1481–1500. https://doi.org/10.1080/10473289.2000.10464170

    Article  CAS  Google Scholar 

  42. Anderson H, Bremner S, Atkinson R, Harrison R, Walters S (2001) Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58(8):504–510. https://doi.org/10.1136/oem.58.8.504

    Article  CAS  Google Scholar 

  43. Drozhzhin VS, Pikulin IV, Kuvaev MD, Redyushev S, Shpirt MY (2005) Technical monitoring of microspheres from fly ashes of electric power stations in the Russian Federation. In: Proceedings of “world of coal ash” conference, Lexington, Kentucky, USA, pp 11–14

  44. Mondal D, Das S, Ramakrishnan N, Bhasker KU (2009) Cenosphere filled aluminum syntactic foam made through stir-casting technique. Compos Part A Appl Sci Manuf 40(3):279–288. https://doi.org/10.1016/j.compositesa.2008.12.006

    Article  CAS  Google Scholar 

  45. Wang M-R, Jia D-C, He P-G, Zhou Y (2011) Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites. Ceram Int 37(5):1661–1666. https://doi.org/10.1016/j.ceramint.2011.02.010

    Article  CAS  Google Scholar 

  46. Ghosal S, Self SA (1995) Particle size-density relation and cenosphere content of coal fly ash. Fuel 74(4):522–529. https://doi.org/10.1016/0016-2361(95)98354-H

    Article  CAS  Google Scholar 

  47. Goodarzi F, Hower JC (2008) Classification of carbon in Canadian fly ashes and their implications in the capture of mercury. Fuel 87(10–11):1949–1957. https://doi.org/10.1016/j.fuel.2007.11.018

    Article  CAS  Google Scholar 

  48. Anshits N, Mikhailova O, Salanov A, Anshits A (2010) Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8):1849–1862. https://doi.org/10.1016/j.fuel.2010.03.049

    Article  CAS  Google Scholar 

  49. Wang H, Zheng K, Zhang X, Wang Y, Xiao C, Chen L, Tian X (2018) Hollow microsphere-infused porous poly (vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport. J Mater Sci 53(8):6042–6052. https://doi.org/10.1007/s10853-017-1964-y

    Article  CAS  Google Scholar 

  50. Vassilev SV, Menendez R, Diaz-Somoano M, Martinez-Tarazona MR (2004) Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates. Fuel 83(4–5):585–603. https://doi.org/10.1016/j.fuel.2003.10.003

    Article  CAS  Google Scholar 

  51. Huang Z-Q, Yu S-R, Li M-Q (2010) Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites. Trans Nonferr Met Soc China 20:s458–s462. https://doi.org/10.1016/S1003-6326(10)60518-3

    Article  CAS  Google Scholar 

  52. Liu F, Wang J, Qian X (2017) Integrating phase change materials into concrete through microencapsulation using cenospheres. Cem Concr Compos 80:317–325. https://doi.org/10.1016/j.cemconres.2017.02.023

    Article  CAS  Google Scholar 

  53. Fomenko EV, Anshits NN, Pankova MV, Solovyov LA, Anshits AG (2011) Fly ash cenospheres: composition, morphology, structure, and helium permeability. In: World coal ash conference—May, 2011, pp 9–12

  54. Bajukov O, Anshits N, Petrov M, Balaev A, Anshits A (2009) Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fly ashes. Mater Chem Phys 114(1):495–503. https://doi.org/10.1016/j.matchemphys.2008.09.061

    Article  CAS  Google Scholar 

  55. Barbare N, Shukla A, Bose A (2003) Uptake and loss of water in a cenosphere—concrete composite material. Cem Concr Res 33(10):1681–1686. https://doi.org/10.1016/S0008-8846(03)00148-0

    Article  CAS  Google Scholar 

  56. Żyrkowski M, Neto RC, Santos LF, Witkowski K (2016) Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 174:49–53. https://doi.org/10.1016/j.fuel.2016.01.061

    Article  CAS  Google Scholar 

  57. Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120. https://doi.org/10.1016/0360-1285(95)00012-7

    Article  CAS  Google Scholar 

  58. Majkrzak G, Watson J, Bryant M, Clayton K (2007) Effect of cenospheres on fly ash brick properties. In: Proceedings of world coal ash, Covington, Kentuck, USA

  59. Tiwari V, Shukla A, Bose A (2004) Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl Acoust 65(3):263–275. https://doi.org/10.1016/j.apacoust.2003.09.002

    Article  Google Scholar 

  60. Noor-ul-Amin (2014) A multi-directional utilization of different ashes. RSC Adv 4(107):62769–62788. https://doi.org/10.1039/C4RA06568A

    Article  CAS  Google Scholar 

  61. Kolay P, Dp Singh (2001) Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cem Concr Res 31(4):539–542. https://doi.org/10.1016/S0008-8846(01)00457-4

    Article  CAS  Google Scholar 

  62. Fomenko EV, Anshits NN, Vasilieva NG, Mikhaylova OA, Rogovenko ES, Zhizhaev AM, Anshits AG (2015) Characterization of fly ash cenospheres produced from the combustion of Ekibastuz coal. Energy Fuels 29(8):5390–5403

    Article  CAS  Google Scholar 

  63. Fomenko EV, Anshits NN, Solovyov LA, Mikhaylova OA, Anshits AG (2013) Composition and morphology of fly ash cenospheres produced from the combustion of Kuznetsk coal. Energy Fuels 27(9):5440–5448. https://doi.org/10.1021/ef400754c

    Article  CAS  Google Scholar 

  64. Zhang X, Huo W, Lu Y, Gan K, Yan S, Liu J, Yang J (2019) Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. J Mater Sci 54(6):4484–4494. https://doi.org/10.1007/s10853-018-3118-2

    Article  CAS  Google Scholar 

  65. Kruger RA (1996) The use of cenospheres in refractories. Energeia 7(4):1–5

    Google Scholar 

  66. Liu F, Wang J, Qian X, Hollingsworth J (2017) Internal curing of high performance concrete using cenospheres. Cem Concr Res 95:39–46. https://doi.org/10.1016/j.cemconres.2017.02.023

    Article  CAS  Google Scholar 

  67. Blanco F, García P, Mateos P, Ayala J (2000) Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem Concr Res 30(11):1715–1722. https://doi.org/10.1016/S0008-8846(00)00357-4

    Article  CAS  Google Scholar 

  68. Hanif A, Diao S, Lu Z, Fan T, Li Z (2016) Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres—mechanical and thermal insulating properties. Constr Build Mater 116:422–430. https://doi.org/10.1016/j.conbuildmat.2016.04.134

    Article  CAS  Google Scholar 

  69. de Souza FB, Montedo ORK, Grassi RL, Antunes EGP (2019) Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate. Matéria (Rio de Janeiro). https://doi.org/10.1590/s1517-707620190004.0834

    Article  Google Scholar 

  70. Wang J-Y, Zhang M-H, Li W, Chia K-S, Liew RJ (2012) Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction. Cem Concr Res 42(5):721–727. https://doi.org/10.1016/j.cemconres.2012.02.010

    Article  CAS  Google Scholar 

  71. Hanif A, Lu Z, Diao S, Zeng X, Li Z (2017) Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr Build Mater 140:139–149. https://doi.org/10.1016/j.conbuildmat.2017.02.093

    Article  CAS  Google Scholar 

  72. Hanif A, Lu Z, Sun M, Parthasarathy P, Li Z (2017) Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix. J Clean Prod 159:326–335. https://doi.org/10.1016/j.jclepro.2017.05.079

    Article  CAS  Google Scholar 

  73. Meng X-f, Li D-h, Shen X-q, Liu W (2010) Preparation and magnetic properties of nano-Ni coated cenosphere composites. Appl Surf Sci 256(12):3753–3756. https://doi.org/10.1016/j.apsusc.2010.01.019

    Article  CAS  Google Scholar 

  74. Hanif A, Parthasarathy P, Lu Z, Sun M, Li Z (2017) Fiber-reinforced cementitious composites incorporating glass cenospheres—mechanical properties and microstructure. Constr Build Mater 154:529–538. https://doi.org/10.1016/j.conbuildmat.2017.07.235

    Article  CAS  Google Scholar 

  75. Hanif A, Usman M, Lu Z, Cheng Y, Li Z (2018) Flexural fatigue behavior of thin laminated cementitious composites incorporating cenosphere fillers. Mater Des 140:267–277. https://doi.org/10.1016/j.matdes.2017.12.003

    Article  CAS  Google Scholar 

  76. Satpathy H, Patel S, Nayak A (2019) Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater 202:636–655. https://doi.org/10.1016/j.conbuildmat.2019.01.034

    Article  Google Scholar 

  77. Zheng Z, Su Q, Zhang Q, Ye H, Wang Z (2018) Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. J Mater Sci 53(17):12421–12431. https://doi.org/10.1007/s10853-018-2515-x

    Article  CAS  Google Scholar 

  78. Qi Y-C, Shen J, Jiang Q-Y, Jin B, Chen J-W, Zhang X, Su J-L (2016) Hierarchical porous hydroxyapatite microspheres: synthesis and application in water treatment. J Mater Sci 51(5):2598–2607. https://doi.org/10.1007/s10853-015-9573-0

    Article  CAS  Google Scholar 

  79. Hajimohammadi A, Ngo T, Provis JL, Kim T, Vongsvivut J (2019) High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Compos Part B Eng 173:106908. https://doi.org/10.1016/j.compositesb.2019.106908

    Article  CAS  Google Scholar 

  80. Baduge SK, Mendis P, San Nicolas R, Nguyen K, Hajimohammadi A (2019) Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Constr Build Mater 224:158–172. https://doi.org/10.1016/j.conbuildmat.2019.07.069

    Article  CAS  Google Scholar 

  81. Fisher GL, Chang D, Brummer M (1976) Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science 192(4239):553–555. https://doi.org/10.1126/science.192.4239.553

    Article  CAS  Google Scholar 

  82. Raask E (1985) Mineral impurities in coal combustion: behavior, problems, and remedial measures, 1st edn. Taylor & Francis, London

    Google Scholar 

  83. Oh MS, Peters WA, Howard JB (1989) An experimental and modeling study of softening coal pyrolysis. AIChE J 35(5):775–792. https://doi.org/10.1002/aic.690350509

    Article  CAS  Google Scholar 

  84. Matsuoka K, Akiho H, Xu W-c, Gupta R, Wall TF, Tomita A (2005) The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel 84(1):63–69. https://doi.org/10.1016/j.fuel.2004.07.006

    Article  CAS  Google Scholar 

  85. Seames WS (2003) An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process Technol 81(2):109–125. https://doi.org/10.1016/S0378-3820(03)00006-7

    Article  CAS  Google Scholar 

  86. Goodarzi F, Sanei H (2009) Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel 88(2):382–386. https://doi.org/10.1016/j.fuel.2008.08.015

    Article  CAS  Google Scholar 

  87. Sarkar A, Rano R, Mishra K, Mazumder A (2007) Characterization of cenospheres collected from ash-pond of a super thermal power plant. Energy Sources Part A Recov Util Environ Eff 30(3):271–283. https://doi.org/10.1080/00908310600713883

    Article  CAS  Google Scholar 

  88. Frandsen FJ (2009) Ash research from Palm Coast, Florida to Banff, Canada: entry of biomass in modern power boilers. Energy Fuels 23(7):3347–3378. https://doi.org/10.1021/ef8010355

    Article  CAS  Google Scholar 

  89. Shpirt MY (1986) Waste-free technology. Utilization of wastes of mining and processing of solid combustible minerals, 1st edn. Nedra, Moscow

    Google Scholar 

  90. Drozhzhin V, Shpirt MY, Danilin L, Kuvaev M, Pikulin I, Potemkin G, Redyushev S (2008) Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations. Solid Fuel Chem 42(2):107–119. https://doi.org/10.3103/S0361521908020110

    Article  Google Scholar 

  91. Soh WM, Tan J, Heng JY, Cheeseman C (2017) Production of cenospheres from coal fly ash through vertical thermal flame (VTF) process. In: Materials science forum, vol 880. Trans Tech Publications, pp 7–10. https://doi.org/10.4028/www.scientific.net/MSF.880.7

    Article  Google Scholar 

  92. Vassilev SV, Vassileva CG (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47(3):261–280. https://doi.org/10.1016/0378-3820(96)01016-8

    Article  CAS  Google Scholar 

  93. Bibby DM (1977) Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand. Fuel 56(4):427–431. https://doi.org/10.1016/0016-2361(77)90071-0

    Article  CAS  Google Scholar 

  94. Srinivasachar S, Helble JJ, Boni AA, Shah N, Huffman GP, Huggins FE (1990) Mineral behavior during coal combustion. 2. Illite transformations. Prog Energy Combust Sci 16(4):293–302. https://doi.org/10.1016/0360-1285(90)90038-5

    Article  CAS  Google Scholar 

  95. Hubbard F, McGill R, Dhir R, Ellis M (1984) Clay and pyrite transformations during ignition of pulverised coal. Mineral Mag 48(347):251–256. https://doi.org/10.1180/minmag.1984.048.347.09

    Article  CAS  Google Scholar 

  96. Spears D (2000) Role of clay minerals in UK coal combustion. Appl Clay Sci 16(1–2):87–95. https://doi.org/10.1016/S0169-1317(99)00048-4

    Article  CAS  Google Scholar 

  97. Raask E (1968) Cenospheres in pulverized-fuel ash. J Inst Fuel 41(332):339

    CAS  Google Scholar 

  98. Harry M, Eenkhoorn S, Hamburg G (1996) A fundamental investigation of the flame kinetics of coal pyrite. Fuel 75(8):945–951. https://doi.org/10.1016/0016-2361(96)00049-X

    Article  Google Scholar 

  99. Sokol E, Maksimova N, Volkova N, Nigmatulina E, Frenkel A (2000) Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (South Urals, Russia). Fuel Process Technol 67(1):35–52. https://doi.org/10.1016/S0378-3820(00)00084-9

    Article  CAS  Google Scholar 

  100. Newall H, Sinnatt F (1924) The carbonization of coal in the form of fine particles. I. The production of cenospheres. Fuel 3(4):424

    Google Scholar 

  101. Joseph K, Francis F, Chacko J, Das P, Hebbar G (2013) Fly ash cenosphere waste formation in coal fired power plants and its application as a structural material—a review. Int J Eng Res Technol (IJERT) 2(8):1236–1260

    Google Scholar 

  102. Li J, Agarwal A, Iveson S, Kiani A, Dickinson J, Zhou J, Galvin K (2014) Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier. Fuel Process Technol 123:127–139. https://doi.org/10.1016/j.fuproc.2014.01.043

    Article  CAS  Google Scholar 

  103. Petrus H, Hirajima T, Oosako Y, Nonaka M, Sasaki K, Ando T (2011) Performance of dry-separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit. Int J Miner Process 98(1–2):15–23. https://doi.org/10.1016/j.minpro.2010.09.002

    Article  CAS  Google Scholar 

  104. Kolay PK, Bhusal S (2014) Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization. Fuel 117:118–124. https://doi.org/10.1016/j.fuel.2013.09.014

    Article  CAS  Google Scholar 

  105. Karr C (2013) Analytical methods for coal and coal products, vol 2, 1st edn. Academic Press, Cambridge

    Google Scholar 

  106. Shapiro M, Galperin V (2005) Air classification of solid particles: a review. Chem Eng Process Process Intensif 44(2):279–285. https://doi.org/10.1016/j.cep.2004.02.022

    Article  CAS  Google Scholar 

  107. Hirajima T, Petrus H, Oosako Y, Nonaka M, Sasaki K, Ando T (2010) Recovery of cenospheres from coal fly ash using a dry separation process: separation estimation and potential application. Int J Miner Process 95(1–4):18–24. https://doi.org/10.1016/j.minpro.2010.03.004

    Article  CAS  Google Scholar 

  108. Research TM (2019) Cenospheres market—global industry analysis, size, share, growth, trends and forecast 2017–2025. https://www.transparencymarketresearch.com/cenospheres-market.html. Accessed 13 July 2019

  109. International S (2018) Global market trends and forecasts up to 2025. https://www.supplydemandmarketresearch.com/home/toc_publisher/6227?code=SDMRCH6227. Accessed 23 July 2019

  110. Lilkov V, Djabarov N, Bechev G, Kolev K (1999) Properties and hydration products of lightweight and expansive cements Part I: physical and mechanical properties. Cem Concr Res 29(10):1635–1640. https://doi.org/10.1016/S0008-8846(99)00150-7

    Article  CAS  Google Scholar 

  111. Lilkov V, Djabarov N, Bechev G, Petrov O (1999) Properties and hydration products of lightweight and expansive cements Part II: hydration products. Cem Concr Res 29(10):1641–1646. https://doi.org/10.1016/S0008-8846(99)00149-0

    Article  CAS  Google Scholar 

  112. Biederman Jr EW (1972) Lightweight cements for oil wells. Google Patents

  113. Li Z, Xu Y, Liu H, Zhang J, Wei J, Yu Q (2019) Effect of the MgO/silica fume ratio on the reaction process of the MgO–SiO2–H2O system. Materials 12(1):80. https://doi.org/10.3390/ma12010080

    Article  CAS  Google Scholar 

  114. Toutanji HA, El-Korchi T (1995) The influence of silica fume on the compressive strength of cement paste and mortar. Cem Concr Res 25(7):1591–1602. https://doi.org/10.1016/0008-8846(95)00152-3

    Article  CAS  Google Scholar 

  115. Łukowski P, Salih A (2015) Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment. Procedia Eng 108:47–54. https://doi.org/10.1016/j.proeng.2015.06.118

    Article  CAS  Google Scholar 

  116. Liu Z, Zhao K, Tang Y, Hu C (2019) Preparation of a cenosphere curing agent and its application to foam concrete. Adv Mater Sci Eng. https://doi.org/10.1155/2019/7523492

    Article  Google Scholar 

  117. Krafcik M, Macke N, Erk K (2017) Improved concrete materials with hydrogel-based internal curing agents. Gels 3(4):46. https://doi.org/10.3390/gels3040046

    Article  CAS  Google Scholar 

  118. Sahu P, Mahanwar P, Bambole V (2013) Effect of hollow glass microspheres and cenospheres on insulation properties of coatings. Pigment Resin Technol 42(4):223–230. https://doi.org/10.1108/PRT-10-2011-0083

    Article  CAS  Google Scholar 

  119. Rohatgi P, Guo R, Iksan H, Borchelt E, Asthana R (1998) Pressure infiltration technique for synthesis of aluminum–fly ash particulate composite. Mater Sci Eng A 244(1):22–30. https://doi.org/10.1016/S0921-5093(97)00822-8

    Article  Google Scholar 

  120. Souvignier C, Sercombe T, Huo S, Calvert P, Schaffer G (2001) Freeform fabrication of aluminum metal-matrix composites. J Mater Res 16(9):2613–2618. https://doi.org/10.1557/JMR.2001.0359

    Article  CAS  Google Scholar 

  121. Shukla S, Seal S, Akesson J, Oder R, Carter R, Rahman Z (2001) Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Appl Surf Sci 181(1–2):35–50. https://doi.org/10.1016/S0169-4332(01)00341-5

    Article  CAS  Google Scholar 

  122. Cardoso R, Shukla A, Bose A (2002) Effect of particle size and surface treatment on constitutive properties of polyester-cenosphere composites. J Mater Sci 37(3):603–613. https://doi.org/10.1023/A:1013781927227

    Article  CAS  Google Scholar 

  123. Kruger R, Toit P (1991) Recovery and characterization of cenospheres from South African power plants. In: Proceedings of the ninth international ash use symposium, ACAA, EPRI Report No. GS-7162, pp 76–71

  124. Shao Y, Jia D, Zhou Y, Liu B (2008) Novel method for fabrication of silicon nitride/silicon oxynitride composite ceramic foams using fly ash cenosphere as a pore-forming agent. J Am Ceram Soc 91(11):3781–3785. https://doi.org/10.1111/j.1551-2916.2008.02702.x

    Article  CAS  Google Scholar 

  125. Russak MA (1976) Development and characterization of a closed pore insulation material. Am Ceram Soc Bull (United States) 55(5):504–507

    CAS  Google Scholar 

  126. Gupta N, Woldesenbet E, Mensah P (2004) Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos Part A Appl Sci Manuf 35(1):103–111. https://doi.org/10.1016/j.compositesa.2003.08.001

    Article  CAS  Google Scholar 

  127. Hiel C, Dittman D, Ishai O (1993) Composite sandwich construction with syntactic foam core—a practical assessment of post-impact damage and residual strength. Composites 24:447–450. https://doi.org/10.1016/0010-4361(93)90253-5

    Article  Google Scholar 

  128. Johnson A, Mukherjee K, Schlosser S, Raask E (1970) The behaviour of a cenosphere-resin composite under hydrostatic pressure. Ocean Eng 2(1):45–48. https://doi.org/10.1016/0029-8018(70)90013-2

    Article  Google Scholar 

  129. Dou Z, Jiang L, Wu G, Zhang Q, Xiu Z, Chen G (2007) High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr Mater 57(10):945–948. https://doi.org/10.1016/j.scriptamat.2007.07.024

    Article  CAS  Google Scholar 

  130. Wang L, Gao J, An Z, Zhao X, Yao H, Zhang M, Tian Q, Zhai X, Liu Y (2019) Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. J Mater Sci 54(6):5160–5175. https://doi.org/10.1007/s10853-018-03197-7

    Article  CAS  Google Scholar 

  131. Ploux L, Mateescu M, Guichaoua L, Valentin J, Böhmler J, Anselme K, Champion E, Pécout N, Chotard-Ghodsnia R, Viana M (2016) New colloidal fabrication of bioceramics with controlled porosity for delivery of antibiotics. J Mater Sci 51(19):8861–8879. https://doi.org/10.1007/s10853-016-0133-z

    Article  CAS  Google Scholar 

  132. King J, Quinn R, Glenn DM, Janssen J, Tong D, Liaw W, Morris DL (2008) Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 113(5):921–929. https://doi.org/10.1002/cncr.23685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamar Danish.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danish, A., Mosaberpanah, M.A. Formation mechanism and applications of cenospheres: a review. J Mater Sci 55, 4539–4557 (2020). https://doi.org/10.1007/s10853-019-04341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04341-7

Navigation