Skip to main content
Log in

A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The boron-doped g-C3N4 nanosheets (BCNNs) have been successfully synthesized via an ultra-rapid and environment-friendly microwave heating route. The reaction system is quite simple, using boric-acid-modified melamine as raw materials and carbon fibers as microwave absorbent, respectively. Based on the optical characterizations and calculation, the results show an abnormal phenomenon that the introduction of B element into g-C3N4 host leads to the increase in band gap. The enlarged band gap should be ascribed to the quantum confinement effect derived from the special nanosheets microstructure of the obtained BCNNs. For the visible-light photocatalytic experiment, 92.9% rhodamine B can be degraded at room temperature in just 30 min in the presence of BCNNs, and the photodegradation rate constant of BCNNs is 3.3 times that of the pure g-C3N4 (PCN). In comparison with the PCN, the enhanced photocatalytic activity of BCNNs can be attributed to the more satisfactory mesoporous structure, larger surface-to-volume ratio, and higher charge separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365

    Article  CAS  Google Scholar 

  2. Abbott D (2009) Keeping the energy debate clean: how do we supply the world’s energy needs. Pro IEEE 97:1931–1934

    Article  Google Scholar 

  3. Gohar A (2016) Urbanization & sustainable development: evolution and contemporary challenges. J Civil Eng Architect Res. 3:1813–1825

    Google Scholar 

  4. Liu S, Li D, Sun H, Ang HM, Tadé MO, Wang S (2016) Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J Colloid Interface Sci 468:176–182

    Article  CAS  Google Scholar 

  5. Wang X, Maeda K, Thomas A, Takanabe K, Xin G (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  6. Zhu J, Diao T, Wang W, Xu X, Sun X, Carabineiro SAC, Zhao Z (2017) Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl Catal B Environ 219:92–100

    Article  CAS  Google Scholar 

  7. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Edit 51:68–89

    Article  CAS  Google Scholar 

  8. Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S (2011) Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Edit 50:657–660

    Article  CAS  Google Scholar 

  9. Thaweesak S, Wang S, Lyu M, Xiao M, Peerakiatkhajohn P (2017) Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton T 46:10714–10720

    Article  CAS  Google Scholar 

  10. Aleksandrzak M, Kukulka W, Mijowska E (2017) Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl Surf Sci 398:56–62

    Article  CAS  Google Scholar 

  11. Shia J, Chena G, Zeng G, Chen A, He K, Huang Z, Hu L, Zeng J, Wu J, Liu W (2018) Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceram Int 44:7473–7480

    Article  CAS  Google Scholar 

  12. Di G, Zhu Z, Zhang H, Zhu J, Lu H, Zhang W, Qiu Y, Zhu L, Küppers S (2017) Simultaneous removal of several pharmaceuticals and arsenic on Zn–Fe mixed metal oxides: combination of photocatalysis and adsorption. Chem Eng J 328:141–151

    Article  CAS  Google Scholar 

  13. Xiao J, Jiang H (2017) Thermally stable metal-organic framework-templated synthesis of hierarchically porous metal sulfides: enhanced photocatalytic hydrogen production. Adv Sci News 13:1700632–1700640

    Google Scholar 

  14. Karmaoui M, Lajaunie L, Tobaldi DM, Leonardi G, Benbayer C, Arenal R, Labrincha JA, Neri G (2017) Modification of anatase using noble-metals (Au, Pt, Ag): toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing. Appl Catal B Environ 218:370–384

    Article  CAS  Google Scholar 

  15. Chan D, Yu J, Li Y, Hu Z (2017) A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. J Environ Sci 60:91–97

    Article  Google Scholar 

  16. Jiang W, Luo W, Wang J, Zhang M, Zhu Y (2016) Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J Photochem Photobi C Photochem Rev 28:87–115

    Article  CAS  Google Scholar 

  17. Cheng N, Jiang P, Liu Q, Tian J, Asiri AM, Sun X (2014) Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139:5065–5068

    Article  CAS  Google Scholar 

  18. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51:12251–12253

    Article  CAS  Google Scholar 

  19. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev 45:2308–2326

    Article  CAS  Google Scholar 

  20. Yu Y, Wang J (2016) Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity. Ceram Int 42:4063–4071

    Article  CAS  Google Scholar 

  21. Yan S, Li Z, Zou Z (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  CAS  Google Scholar 

  22. Chang F, Li C, Luo J, Xie Y, Deng B (2015) Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Appl Surf Sci 358:270–277

    Article  CAS  Google Scholar 

  23. Li S, Wang Z, Wang X, Sun F, Gao K, Hao N, Zhang Z, Ma Z, Li H, Huang X, Huang W (2017) Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Res 10:1710–1719

    Article  CAS  Google Scholar 

  24. Huang Z, Li F, Chen B, Yuan G (2015) Nanoporous photocatalysts developed through heat-driven stacking of graphitic carbon nitride nanosheets. RSC Adv 5:14027–14033

    Article  CAS  Google Scholar 

  25. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377

    Article  CAS  Google Scholar 

  26. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  CAS  Google Scholar 

  27. Wang W, Chakrabarti S, Chen Z, Yan Z, Tade M (2014) A novel bottom-up solvothermal synthesis of carbon nanosheets. J Mater Chem A 2:2390–2396

    Article  CAS  Google Scholar 

  28. Yang Z, Zhang Y, Schnepp Z (2018) Soft and hard templating of graphitic carbon nitride. J Mater Chem A 3:1481–1492

    Google Scholar 

  29. Barrio J, Lin L, Amo-Ochoa P, Tzadikov J, Peng G, Sun J, Zamora F, Wang X, Shalom M (2018) Unprecedented centimeter-long carbon nitride needles: synthesis, characterization and applications. Small 14:1800633

    Article  CAS  Google Scholar 

  30. Barrio J, Shalom M (2018) Rational design of carbon nitride materials by supramolecular preorganization of monomers. ChemCatChem https://doi.org/10.1002/cctc.201801410

  31. Deng Q, Li Q (2018) Facile preparation of Mg-doped graphitic carbon nitride composites as a solid base catalyst for Knoevenagel condensations. J Mater Sci 53:506–515. https://doi.org/10.1007/s10853-017-1534-3

    Article  CAS  Google Scholar 

  32. Xu H, Wu Z, Wang Y, Lin C (2017) Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J Mater Sci 52:9477–9490. https://doi.org/10.1007/s10853-017-1167-6

    Article  CAS  Google Scholar 

  33. Shen Y, Zhang C, Yan C, Chen H, Zhang Y (2017) Fabrication of porous graphitic carbon nitride-titanium dioxide heterojunctions with enhanced photo-energy conversion activity. Chin Chem Lett 28:1312–1317

    Article  CAS  Google Scholar 

  34. Gu Y, Yu Y, Zou J, Shen T, Xu Q, Yue X, Meng J, Wang J (2018) The ultra-rapid synthesis of rGO/g-C3N4 composite via microwave heating with enhanced photocatalytic performance. Mater Lett 232:107–109

    Article  CAS  Google Scholar 

  35. Liu S, Zhu H, Yao W, Chen K, Chen D (2017) One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity. Appl Surf Sci 430:309–315

    Article  CAS  Google Scholar 

  36. Dong G, Ai Z, Zhang L (2014) Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light. RSC Adv 4:5553–5560

    Article  CAS  Google Scholar 

  37. Han X, Yuan A, Yao C, Xi F, Liu J, Dong X (2018) Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets. J Mater Sci. https://doi.org/10.1007/s10853-018-2925-9

    Article  Google Scholar 

  38. Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chem Sci 2:446–450

    Article  CAS  Google Scholar 

  39. Yan S, Li Z, Zou Z (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    Article  CAS  Google Scholar 

  40. Yuan Y, Yin L, Cao S, Gu L, Xu G, Du P, Chai H, Liao Y, Xue C (2014) Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production. Green Chem 16:4663–4668

    Article  CAS  Google Scholar 

  41. Yu Y, Wang C, Luo L, Wang J, Meng J (2018) An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation. Chem Eng J 334:1869–1877

    Article  CAS  Google Scholar 

  42. Wang J, Liu S, Huang S, Zhou Q (2016) EBSD characterization the growth mechanism of SiC synthesized via direct microwave heating. Mater Charact 114:54–61

    Article  CAS  Google Scholar 

  43. Yu Y, Cheng S, Wang L, Zhu W, Luo L, Xu X, Song F, Li X, Wang J (2018) Self-assembly of yolk-shell porous Fe-doped g-C3N4 microarchitectures with excellent photocatalytic performance under visible light. Sustain Mater Technol 17:e00072

    CAS  Google Scholar 

  44. Yu Y, Zhou Q, Wang J (2016) The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem Commun 52:3396–3399

    Article  CAS  Google Scholar 

  45. Liu S, Wang J (2017) Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating. Mat Sci Semicon Proc 72:60–66

    Article  CAS  Google Scholar 

  46. Zhou Q, Yu Y, Huang S, Meng J, Wang J (2017) Field-emission property of self-purification SiC/SiOx coaxial nanowires synthesized via direct microwave irradiation using iron-containing catalyst. Electron Mater Lett 13:351–358

    Article  CAS  Google Scholar 

  47. Tzadikov J, Auinat M, Barrio J, Volokh M, Peng G, Gervais C, Ein-Eli Y, Shalom M (2018) Layered boron-nitrogen-carbon-oxygen materials with tunable composition as lithium-ion battery anodes. Chemsuschem 11:2912–2920

    Article  CAS  Google Scholar 

  48. Zhang W, Barrio J, Gervais C, Kocjan A, Yu A, Wang X, Shalom M (2018) Synthesis of carbon-nitrogen-phosphorous materials with an unprecedented high amount of phosphorous toward an efficient fire-retardant material. Angew Chem Int Ed 57:9764–9769

    Article  CAS  Google Scholar 

  49. Iqbal W, Dong C, Xing M, Tan X, Zhang J (2017) Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity. Catal Sci Technol 7:1726–1734

    Article  CAS  Google Scholar 

  50. Yan J, Zhou C, Li P, Chen B, Zhang S, Dong X, Xi F, Liu J (2016) Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Coll Surf A Physicochem Eng Aspects 508:257–264

    Article  CAS  Google Scholar 

  51. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    Article  CAS  Google Scholar 

  52. Hong Y, Li C, Fang Z, Luo B, Shi W (2017) Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Carbon 121:463–471

    Article  CAS  Google Scholar 

  53. Lee CH, Wang J, Kayatsha VK, Huang J, Yap YK (2008) Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19:455605–455610

    Article  CAS  Google Scholar 

  54. Qiu P, Xu C, Chen H, Jiang F, Wang X, Lu R, Zhang X (2017) One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity. Appl Catal B Environ 206:319–327

    Article  CAS  Google Scholar 

  55. Romanos J, Beckner M, Stalla D, Tekeei A, Suppes G, Jalisatgi S, Lee M, Hawthorne F, Robertson JD, Firlej L, Kuchta B, Wexler C, Yu P, Pfeifer P (2013) Infrared study of boron-carbon chemical bonds in boron-doped activated carbon. Carbon 54:208–214

    Article  CAS  Google Scholar 

  56. Kong L, Chen Q, Shen X, Xia C, Ji Z, Zhu J (2017) Ionic liquid templated porous boron-doped graphitic carbon nitride nanosheet electrode for high-performance supercapacitor. Electrochim Acta 245:249–258

    Article  CAS  Google Scholar 

  57. Wang Z, Chen M, Huang Y, Shi X, Zhang Y, Huang T, Cao J, Ho W, Lee SC (2018) Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl Catal B Environ 239:352–361

    Article  CAS  Google Scholar 

  58. Zhang S, Gao L, Fan D, Lv X, Li Y, Yan Z (2017) Synthesis of boron-doped g-C3N4 with enhanced electro-catalytic activity and stability. Chem Phys Lett 672:26–30

    Article  CAS  Google Scholar 

  59. Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S (2016) Boron doped g-C3N4 with enhanced photocatalytic UO2 2+ reduction performance. Appl Surf Sci 360:1016–1022

    Article  CAS  Google Scholar 

  60. Luo L, Zhang A, Janik MJ, Li K, Song C (2017) Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation. Appl Surf Sci 396:78–84

    Article  CAS  Google Scholar 

  61. Brus L (1986) Zero-dimensional “excitons” in semiconductor clusters. IEEE J Quantum Elect 22:1909–1914

    Article  Google Scholar 

  62. Chen H, Yao J, Qiu P, Xu C, Jiang F, Wang X (2017) Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity. Mater Res Bull 91:42–48

    Article  CAS  Google Scholar 

  63. Jourshabani M, Shariatinia Z, Badiei A (2017) Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. J Colloid Interface Sci 507:59–73

    Article  CAS  Google Scholar 

  64. Li H, Liu Y, Gao X, Fu C, Wang X (2015) Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. Chemsuschem 8:1189–1196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Program for New Century Excellent Talents in University (NECT-12-0119), the Key Project and Youth Project of Science and Technology of Tibet Autonomous Region (XZ2017ZRG-66(Z), XZ2017ZRG-49(Z)), Technology Research Project of Jiangxi Provincial Education Department (GJJ170785), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Yu, Y., Yan, W. et al. A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. J Mater Sci 54, 6867–6881 (2019). https://doi.org/10.1007/s10853-019-03384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03384-0

Navigation