Skip to main content
Log in

Modification of graphene oxide to induce beta crystals in isotactic polypropylene

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was functionalized with pimelic acid (PA) on its surface to produce a β-crystal nucleating agent. The functionalization was characterized by Fourier transform infrared spectroscopy, showing the presence of new bands at 1570 and 1406 cm−1 indicating a bridging bidentate link of the PA on the GO surface through the Ca used during the functionalization. These observations were concomitant with the Raman spectroscopy results where the D–G intensity ratio increased, suggesting that the disorder in GO structure increased when the PA molecules are attached on the GO surface. The modified graphene oxide (GO-PA) showed high thermal stability, making it attractive for melt blending composites. These results were observed by thermal differential scanning calorimetry (DSC) and thermogravimetric analysis. The DSC and wide-angle X-ray diffraction (WAXD) results demonstrated that the modified GO is an excellent β-nucleating promoter even at low percentages (0.05 GO-PA % w/w) in contrast to the unmodified GO. The content of β-crystals under isothermal crystallization conditions reached a value as high as 92% by DSC while the extrudes prepared by compression and analyzed by WAXD showed a kβ = 0.78 by Turner-Jones method at the same percentage of modified filler. The storage modulus for the iPP composites (GO/iPP and GO-PA/iPP) was in all cases higher than that for the raw iPP sample because of the presence of GO in the polymer matrix. However, a decrease in the storage modulus can be observed for the GO-PA/iPP composites because of the presence of high percentages of β-crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Papageorgiou DG, Chrissafis K, Bikiaris DN (2015) β-nucleated polypropylene: processing, properties and nanocomposites. Polym Rev 55:596–629. https://doi.org/10.1080/15583724.2015.1019136

    Article  CAS  Google Scholar 

  2. Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47:7612–7624. https://doi.org/10.1021/ma5009868

    Article  CAS  Google Scholar 

  3. Varga J (2002) Β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171. https://doi.org/10.1081/MB-120013089

    Article  CAS  Google Scholar 

  4. Bárány T, Izer A, Karger-Kocsis J (2009) Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym Test 28:176–182. https://doi.org/10.1016/j.polymertesting.2008.11.011

    Article  CAS  Google Scholar 

  5. Varga J, Ehrenstein GW, Schlarb AK (2008) Vibration welding of alpha and beta isotactic polypropylenes: mechanical properties and structure. Express Polym Lett 2:148–156. https://doi.org/10.3144/expresspolymlett.2008.20

    Article  CAS  Google Scholar 

  6. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74:2357–2368. https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10%3c2357:AID-APP3%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  7. Shi G, Zhang X (1992) Effect of β-nucleator content on the crystallization and melting behaviour of β-crystalline phase polypropylene. Thermochim Acta 205:235–243. https://doi.org/10.1016/0040-6031(92)85265-W

    Article  CAS  Google Scholar 

  8. Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol 3:151–156. https://doi.org/10.1002/vnl.10182

    Article  CAS  Google Scholar 

  9. Dou Q (2007) Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci Part B 46:1063–1080. https://doi.org/10.1080/00222340701581334

    Article  CAS  Google Scholar 

  10. Menyhárd A, Dora G, Horváth Z et al (2012) Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim 108:613–620. https://doi.org/10.1007/s10973-011-1900-3

    Article  CAS  Google Scholar 

  11. Molnár J, Menyhárd A (2016) Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim 124:1463–1469. https://doi.org/10.1007/s10973-016-5271-7

    Article  CAS  Google Scholar 

  12. Zhang Z, Tao Y, Yang Z, Mai K (2008) Preparation and characteristics of nano-CaCO3 supported β-nucleating agent of polypropylene. Eur Polym J 44:1955–1961. https://doi.org/10.1016/j.eurpolymj.2008.04.022

    Article  CAS  Google Scholar 

  13. Zhang Z, Wang C, Yang Z et al (2008) Crystallization behavior and melting characteristics of PP nucleated by a novel supported β-nucleating agent. Polymer (Guildf) 49:5137–5145. https://doi.org/10.1016/j.polymer.2008.09.009

    Article  CAS  Google Scholar 

  14. Zhan KJ, Yang W, Yue L et al (2012) MWCNTs supported N, N-dicyclohexyl-1,5-diamino-2,6-naphthalenedicarboxamide: a novel beta;-nucleating agent for polypropylene. J Macromol Sci Part B Phys 51:2412–2427. https://doi.org/10.1080/00222348.2012.676366

    Article  CAS  Google Scholar 

  15. Zhang Z, Chen C, Wang C et al (2010) A novel highly efficient β-nucleating agent for polypropylene using nano-CaCO3 as a support. Polym Int 59:1199–1204. https://doi.org/10.1002/pi.2847

    Article  CAS  Google Scholar 

  16. Wang S-W, Yang W, Bao R-Y et al (2010) The enhanced nucleating ability of carbon nanotube-supported β-nucleating agent in isotactic polypropylene. Colloid Polym Sci 288:681–688. https://doi.org/10.1007/s00396-010-2194-x

    Article  CAS  Google Scholar 

  17. Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ et al (2014) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50:1457–1468. https://doi.org/10.1007/s10853-014-8706-1

    Article  CAS  Google Scholar 

  18. Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM et al (2015) Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci 24:7998–8006. https://doi.org/10.1007/s10853-015-9365-6

    Article  CAS  Google Scholar 

  19. Bao R-Y, Cao J, Liu Z-Y et al (2014) Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A 2:3190–3199. https://doi.org/10.1039/C3TA14554A

    Article  CAS  Google Scholar 

  20. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  21. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  22. Shim SH, Kim KT, Lee JU, Jo WH (2012) Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite. ACS Appl Mater Interfaces 4:4184–4191. https://doi.org/10.1021/am300906z

    Article  CAS  Google Scholar 

  23. Shin K-Y, Hong J-Y, Lee S, Jang J (2012) Evaluation of anti-scratch properties of graphene oxide/polypropylene nanocomposites. J Mater Chem 22:7871–7879. https://doi.org/10.1039/c2jm15569a

    Article  CAS  Google Scholar 

  24. Yuan B, Bao C, Song L et al (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420. https://doi.org/10.1016/j.cej.2013.10.030

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  26. Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromol Chemie 75:134–158. https://doi.org/10.1002/macp.1964.020750113

    Article  Google Scholar 

  27. Meng MR, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng, A 492:177–184. https://doi.org/10.1016/j.msea.2008.03.048

    Article  CAS  Google Scholar 

  28. Liu M, Guo B, Du M et al (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer (Guildf) 50:3022–3030. https://doi.org/10.1016/j.polymer.2009.04.052

    Article  CAS  Google Scholar 

  29. Song J, Wang X, Chang C-T (2014) Preparation and characterization of graphene oxide. J Nanomater 2014:1–6. https://doi.org/10.1155/2014/276143

    Article  CAS  Google Scholar 

  30. Veerapandian M, Lee M-H, Krishnamoorthy K, Yun K (2012) Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon N Y 50:4228–4238. https://doi.org/10.1016/j.carbon.2012.05.004

    Article  CAS  Google Scholar 

  31. Su X, Wang G, Li W et al (2013) A simple method for preparing graphene nano-sheets at low temperature. Adv Powder Technol 24:317–323. https://doi.org/10.1016/j.apt.2012.08.003

    Article  CAS  Google Scholar 

  32. Shen J, Yan B, Shi M et al (2011) Synthesis of graphene oxide-based biocomposites through diimide-activated amidation. J Colloid Interface Sci 356:543–549. https://doi.org/10.1016/j.jcis.2011.01.052

    Article  CAS  Google Scholar 

  33. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363. https://doi.org/10.1021/ma902862u

    Article  CAS  Google Scholar 

  34. Kudin KN, Ozbas B, Schniepp HC et al (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  Google Scholar 

  35. González A, Pérez E, Almendarez A et al (2015) Calcium pimelate supported on TiO2 nanoparticles as isotactic polypropylene prodegradant. Polym Bull 73:39–51. https://doi.org/10.1007/s00289-015-1469-2

    Article  CAS  Google Scholar 

  36. Taguchi M, Takami S, Naka T, Adschiri T (2009) Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water: tailor-made water-soluble CeO2 nanocrystals. Cryst Growth Des 9:5297–5303. https://doi.org/10.1021/cg900809b

    Article  CAS  Google Scholar 

  37. Li X, Hu K, Ji M et al (2002) Calcium dicarboxylates nucleation of β-polypropylene. J Appl Polym Sci 86:633–638. https://doi.org/10.1002/app.10913

    Article  CAS  Google Scholar 

  38. Jehlička J, Vítek P, Edwards HGM (2010) Raman spectra of organic acids obtained using a portable instrument at − 5 °C in a mountain area at 2000 m above sea level. J Raman Spectrosc 41:440–444. https://doi.org/10.1002/jrs.2450

    Article  CAS  Google Scholar 

  39. Ananthanarayanan V (1960) Raman spectra of single crystals of dicarboxylic acids. Proc Indian Acad Sci-Sect A 51:328–335. https://doi.org/10.1007/BF03045790

    Article  Google Scholar 

  40. Huang Y, Yan W, Xu Y et al (2012) Functionalization of graphene oxide by two-step alkylation. Macromol Chem Phys 213:1101–1106. https://doi.org/10.1002/macp.201100658

    Article  CAS  Google Scholar 

  41. Bosch-Navarro C, Coronado E, Martí-Gastaldo C et al (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale 4:3977–3982. https://doi.org/10.1039/c2nr30605k

    Article  CAS  Google Scholar 

  42. Yan JL, Chen GJ, Cao J et al (2012) Functionalized graphene oxide with ethylenediamine and 1, 6-hexanediamine. Xinxing Tan Cailiao/N Carbon Mater 27:370–376. https://doi.org/10.1016/S1872-5805(12)60022-5

    Article  CAS  Google Scholar 

  43. Haubner K, Murawski J, Olk P et al (2010) The route to functional graphene oxide. ChemPhysChem 11:2131–2139. https://doi.org/10.1002/cphc.201000132

    Article  CAS  Google Scholar 

  44. Dai X, Zhang Z, Wang C et al (2013) A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos Part A Appl Sci Manuf 49:1–8. https://doi.org/10.1016/j.compositesa.2013.01.016

    Article  CAS  Google Scholar 

  45. Mitra T, Sailakshmi G, Gnanamani A, Mandal AB (2013) The effect of pimelic acid interaction on the mechanical and thermal properties of chitosan and collagen. Int J Polym Mater 62:572–582. https://doi.org/10.1080/00914037.2013.769161

    Article  CAS  Google Scholar 

  46. Glover AJ, Cai M, Overdeep KR et al (2011) In situ reduction of graphene oxide in polymers. Macromolecules 44:9821–9829. https://doi.org/10.1021/ma2008783

    Article  CAS  Google Scholar 

  47. Gál S, Meisel T, Erdey L (1969) On the thermal analysis of aliphatic carboxylic acids and their salts. J Therm Anal 1:159–170. https://doi.org/10.1007/BF01909666

    Article  Google Scholar 

  48. Varga J (1989) β-Modification of polypropylene and its two-component systems. J Therm Anal 35:1891–1912. https://doi.org/10.1007/BF01911675

    Article  CAS  Google Scholar 

  49. Dou Q (2008) Effect of calcium salts of glutaric acid and pimelic acid on the formation of β crystalline form in isotactic polypropylene. Polym-Plast Technol Eng 47:851–857. https://doi.org/10.1080/03602550802188938

    Article  CAS  Google Scholar 

  50. Varga J, Stoll K, Menyhárd A, Horváth Z (2011) Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci 121:1469–1480. https://doi.org/10.1002/app.33685

    Article  CAS  Google Scholar 

  51. Monasse B, Haudin J (1985) Growth transition and morphology change in polypropylene. Colloid Polym Sci 263:822–831

    Article  CAS  Google Scholar 

  52. Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer (Guildf) 43:2671–2676. https://doi.org/10.1016/S0032-3861(02)00053-8

    Article  CAS  Google Scholar 

  53. Martin J, Bourson P, Dahoun A, Hiver JM (2009) The ß-spherulite morphology of isotactic polypropylene investigated by Raman spectroscopy. Appl Spectrosc 63:1377–1381. https://doi.org/10.1366/000370209790109067

    Article  CAS  Google Scholar 

  54. Menard KP (2002) Encyclopedia of polymer science and technology. Wiley, Hoboken

    Google Scholar 

  55. Milani MA, González D, Quijada R et al (2013) Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol 84:1–7. https://doi.org/10.1016/j.compscitech.2013.05.001

    Article  CAS  Google Scholar 

  56. Labour T, Gauthier C, Séguéla R et al (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterisation. Polymer (Guildf) 42:7127–7135. https://doi.org/10.1016/S0032-3861(01)00089-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by CONACYT (Project Nos. 78904 and 129962) and Tecnológico Nacional de México (Project No. 6652.18 P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Almendárez-Camarillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastacio-López, Z.S., Gonzalez-Calderon, J.A., Saldivar-Guerrero, R. et al. Modification of graphene oxide to induce beta crystals in isotactic polypropylene. J Mater Sci 54, 427–443 (2019). https://doi.org/10.1007/s10853-018-2866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2866-3

Keywords

Navigation