Skip to main content

Advertisement

Log in

Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemotherapy in cancer treatment usually leads to serious side effects on patients due to the unselectiveness and high toxicity on normal cells of cancer drugs. Loading cancer drugs into nano-platforms could be an alternative approach to effectively deliver drugs to tumors and reduce toxic exposure on healthy cells. In this work, we synthesized drug delivery nano-systems based on Fe3O4 nanoparticles (obtained from co-precipitation reaction) which could provide targeting of drugs to the tumor sites by an external magnetic field. Also, the magnetic nanoparticles (MNPs) could generate heat to kill cancer cells at a certain temperature range. The systems were designed for loading anticancer agent doxorubicin by using alginate-coated iron oxide MNPs. It was found that the loading was achieved by complex formation of doxorubicin and the alginate layer. Various concentrations of alginate solutions produced different sizes as well as drug loading capacities of the nanoparticles. The highest loading content of 18.96% achieved at the alginate concentration of 4 mg ml−1, corresponding to the mass ratio of alginate to Fe3O4 of around 1:2. The magnetic properties, especially the inductive heating effect of the nanoparticles, along with the impact of the systems on tumor cells were investigated. The results proved that the nanoparticles can serve as a good drug delivery system, in terms of both effective hyperthermia and chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Nasongkla N, Bey E, Ren J et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:3–6

    Article  Google Scholar 

  2. Hong G, Yuan R, Liang B et al (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevice 10:693–700

    Article  Google Scholar 

  3. Yu MK, Jeong YY, Park J, et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo**. Evolution:1–5

  4. Ma HL, Xu YF, Qi XR et al (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354:217–226

    Article  Google Scholar 

  5. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  6. Lin MM, Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305

    Article  Google Scholar 

  7. Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481

    Article  Google Scholar 

  8. Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410

    Article  Google Scholar 

  9. Jia Y, Yuan M, Yuan H et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomed 7:1697–1708

    Article  Google Scholar 

  10. Maeng JH, Lee D-H, Jung KH et al (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006

    Article  Google Scholar 

  11. Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250

    Article  Google Scholar 

  12. Insausti M, Salado J, Castellanos I et al (2012) Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia. Proc SPIE 8232:823210/1–823210/8

    Google Scholar 

  13. Kikuchi T, Kasuya R, Endo S, Nakamura A (2010) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323:1216–1222

    Article  Google Scholar 

  14. Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 27:347–351

    Article  Google Scholar 

  15. Longhi A, Ferrari S, Bacci G, Specchia S (2007) Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs 18:737–744

    Article  Google Scholar 

  16. Ahn D, Lee J, Park S et al (2014) Doxorubicin-loaded alginate-g-poly(N-isopropylacrylamide) micelles for cancer imaging and therapy. ACS Appl Mater Interfaces 6(24):22069–22077

    Article  Google Scholar 

  17. Cheng Y, Yu S, Zhen X et al (2012) Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces 4:5325–5332

    Article  Google Scholar 

  18. Javid A, Ahmadian S, Saboury AA et al (2013) Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chem Biol Drug Des 82:296–306

    Article  Google Scholar 

  19. Baghbani F, Moztarzadeh F, Mohandesi JA et al (2016) Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int J Biol Macromol 89:550–558

    Article  Google Scholar 

  20. Sengupta IS, Shah SH, Shah N (2015) A review on: alginate forming in situ gel for treating peptic ulcers and reflux disorders. J Pharm Sci Biosci Res 5:171–179

    Google Scholar 

  21. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci (Oxford) 37:106–126

    Article  Google Scholar 

  22. Nguyen HN, Hoang TMN, Mai TTT et al (2015) Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA–TPGS nanoparticles. Adv Nat Sci Nanosci Nanotechnol 6:25005

    Article  Google Scholar 

  23. Nguyen HN, Thi HHT, Le Quang D et al (2012) Apoptosis induced by paclitaxel-loaded copolymer PLA–TPGS in Hep-G2 cells. Adv Nat Sci Nanosci Nanotechnol 3:45005

    Article  Google Scholar 

  24. Phan QT, Le MH, Le TTH et al (2016) Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA–PEG micellar nano systems with various PLA:PEG ratios. Int J Pharm 507:32–40

    Article  Google Scholar 

  25. Devkota J, Mai TTT, Stojak K et al (2014) Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sensors Actuators B Chem 190:715–722

    Article  Google Scholar 

  26. Huong LTT, Nam NH, Doan DH et al (2016) Folate attached, curcumin loaded Fe3O4 nanoparticles: a novel multifunctional drug delivery system for cancer treatment. Mater Chem Phys 172:98–104

    Article  Google Scholar 

  27. Thu HP, Huong LTT, Nhung HTM et al (2011) Fe3O4/o-carboxylmethyl chitosan/curcumin-based nanodrug system for chemotherapy and fluorescence imaging in HT29 cancer cell line. Chem Lett 11:1–4

    Google Scholar 

  28. Nguyen XP, Tran DL, Ha PT et al (2012) Iron oxide-based conjugates for cancer theragnostics. Adv Nat Sci Nanosci Nanotechnol 3:33001

    Article  Google Scholar 

  29. Kallumadil M, Tada M, Nakagawa T et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–1513

    Article  Google Scholar 

  30. Salas G, Veintemillas-Verdaguer S, Morales MDP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth Off J Eur Soc Hyperth Oncol N Am Hyperth Group 29:768–776

    Article  Google Scholar 

  31. Tran LD, Hoang NMT, Mai TT et al (2010) Nanosized magnetofluorescent Fe3O4-curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A 371:104–112

    Article  Google Scholar 

  32. Wang G, Su X, Yang S et al (2012) The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs. J Lumin 132:2505–2511

    Article  Google Scholar 

  33. Liao S-H, Liu C-H, Bishnu Prasad B et al (2015) Functionalized magnetic iron oxide/alginate core–shell nanoparticles for targeting hyperthermia. Int J Nanomed 10:3315–3328

    Article  Google Scholar 

  34. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF et al (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79

    Article  Google Scholar 

  35. Vasconcelos IB, Da Silva TG, Militão GCG et al (2012) Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv 2:9437–9442

    Article  Google Scholar 

  36. Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490

    Article  Google Scholar 

  37. Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323:237–243

    Article  Google Scholar 

  38. Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8:21–24

    Article  Google Scholar 

  39. Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach methods. Mol Biol 627:55–73

    Google Scholar 

  40. Neuberger T, Schöpf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  Google Scholar 

  41. Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  42. Hałupka-Bryl M, Bednarowicz M, Dobosz B et al (2015) Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J Magn Magn Mater 384:320–327

    Article  Google Scholar 

  43. Marín T, Montoya P, Arnache O, Calderón J (2016) Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J Phys Chem B 120:6634–6645

    Article  Google Scholar 

  44. Khalkhali M, Sadighian S, Rostamizadeh K et al (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for simultaneous diagnostics and therapy. Bioimpacts 5:141–150

    Article  Google Scholar 

  45. Aliahmad M, Nasiri Moghaddam N (2013) Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater Sci Pol 31:264–268

    Article  Google Scholar 

  46. Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  Google Scholar 

  47. Cao S-W, Zhu Y-J, Chang J (2008) Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New J Chem 32:1526–1530

    Article  Google Scholar 

  48. Akbarzadeh A, Mikaeili H, Zarghami N et al (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomed 7:511–526

    Google Scholar 

  49. Chen F-H, Zhang L-M, Chen Q-T et al (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun (Camb) 46:8633–8635

    Article  Google Scholar 

  50. Lima E, De Biasi E, Mansilla MV et al (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46:045002

    Article  Google Scholar 

  51. Chin SF, Iyer KS, Saunders M et al (2009) Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem Eur J 15:5661–5665

    Article  Google Scholar 

  52. Jordan A, Scholz R, Wust P et al (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  Google Scholar 

  53. Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661

    Article  Google Scholar 

  54. Van Landeghem FKH, Maier-hauff K, Jordan A et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Article  Google Scholar 

  55. Maier-hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  Google Scholar 

  56. Liu XL, Fan HM, Yi JB et al (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244

    Article  Google Scholar 

  57. De La Presa P, Luengo Y, Multigner M et al (2012) Study of heating efficiency as a function of concentration, size, and applied field in g-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610

    Article  Google Scholar 

  58. Serantes D, Simeonidis K, Angelakeris M et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934

    Article  Google Scholar 

  59. Nemati Z, Alonso J, Rodrigo I et al (2018) Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C 122:2367–2381

    Article  Google Scholar 

  60. Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I et al (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383

    Article  Google Scholar 

  61. Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85

    Google Scholar 

  62. Yang F, Zhang X, Song L et al (2015) Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Appl Mater Interfaces 7:9410–9419

    Article  Google Scholar 

  63. Margaritis A, Manocha B (2010) Controlled release of doxorubicin from doxorubicin/polyglutamic acid ionic complex. J Nanomater 2010:780171

    Google Scholar 

  64. Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Can Res 73:1524–1535

    Article  Google Scholar 

  65. Javid A, Ahmadian S, Saboury A, Rezaei-zarchi S (2011) Anticancer effect of doxorubicin loaded heparin based super-paramagnetic iron oxide nanoparticles against the human ovarian cancer cells. Int J Biomed Biol Eng 5:141–145

    Google Scholar 

  66. Prabha G, Raj V (2017) Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C 79:410–422

    Article  Google Scholar 

  67. Ghanbari M, Asadi A (2016) Study of the cytotoxicity effect of doxorubicin-loaded/folic acid-targeted super paramagnetic iron oxide nanoparticles on AGS cancer cell line. J Nanomed Nanotechnol 7:368

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Foundation for Science and Technology Development of Vietnam-NAFOSTED under Grant No. 106-YS.06-2015.14 (HPT). The authors would like to thank Dr. Ung Thi Dieu Thuy for her fluorescence measurement and Ms. Cao Phuong Lien for her English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Thu Ha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.T.H., Bui, T.Q., Ha, T.M.T. et al. Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy. J Mater Sci 53, 13826–13842 (2018). https://doi.org/10.1007/s10853-018-2574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2574-z

Keywords

Navigation