Skip to main content

Advertisement

Log in

Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, fluorescent carbon dots (CDs) have attracted a great deal of attention in imaging and related biomedical applications due to their excellent photoluminescence properties, low cost, high quantum yield and low cytotoxicity in comparison with semiconductor quantum dots based on metallic elements. In this paper, a new and simple design for development of CDs/gelatin nanoparticles (CDs/GNPs) is described which used as a novel methotrexate (MTX) nanocarrier and MCF-7 cell imaging. The obtained fluorescent nanocarriers were characterized using FTIR, SEM, XRD, DLS, PL, TGA, and zeta-potential analysis. Afterward, the performance of developed NPs was investigated through different in vitro tests such as MTT assay, fluorescence microscopy, and flow cytometry analyses. MTX was successfully loaded into the fluorescent NPs at physiological pH (7.4) by ionic interactions between anionic carboxylate groups of MTX and cationic amino groups on the surface of NPs. MTX releasing ability of the obtained nanocarrier was illustrated through the comparison of in vitro drug release at both simulated tumor tissue and physiological environment. The MTT assay revealed that the MTX-loaded nanocarriers have higher cytotoxicity in MCF-7 breast cancer cells than nanocarriers without MTX. Upon the obtained results, our fluorescent nanocarriers hold great potential as drug delivery carriers for the targeted MTX delivery to the cancer cells and biological fluorescent labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986

    Article  Google Scholar 

  2. Kim S, Choi Y, Park G, Won C, Park Y-J, Lee Y, Kim B-S, Min D-H (2017) Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res 10(2):503–519

    Article  Google Scholar 

  3. Gun’ko YK (2016) Nanoparticles in bioimaging. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  4. Jin G, He R, Liu Q, Dong Y, Lin M, Li W, Xu F (2018) Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Appl Mater Interfaces 10(13):10634–10646

    Article  Google Scholar 

  5. Jin G, Zhao X, Xu F (2017) Therapeutic nanomaterials for cancer therapy and tissue regeneration. Drug Discov Today 22(9):1285–1287

    Article  Google Scholar 

  6. Jin G, Feng G, Qin W, Tang BZ, Liu B, Li K (2016) Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chem Commun 52(13):2752–2755

    Article  Google Scholar 

  7. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    Article  Google Scholar 

  8. Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11(1):014104

    Article  Google Scholar 

  9. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  Google Scholar 

  10. Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, Qu S, Li J, Chen L, Li Q (2016) Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B 4(30):5119–5126

    Article  Google Scholar 

  11. Kang Z, Liu Y, Lee S-T (2017) Carbon dots for bioimaging and biosensing applications. In: Springer series on chemical sensors and biosensors (methods and applications). Springer, Berlin, Heidelberg, pp 1–31

  12. Jelinek R (2017) Biological applications of carbon-dots. In: Carbon quantum dots. Springer, pp 47–60

  13. Foox M, Zilberman M (2015) Drug delivery from gelatin-based systems. Exp Opin Drug Deliv 12(9):1547–1563

    Article  Google Scholar 

  14. Mironova M, Kovaleva E (2017) Comparative analysis of quality assessment requirements for gelatin used in drug production. Pharm Chem J 50(12):820–825

    Article  Google Scholar 

  15. Liu S, Liu X, Han MY (2016) Controlled modulation of surface coating and surface charging on quantum dots with negatively charged gelatin for substantial enhancement and reversible switching in photoluminescence. Adv Funct Mater 26(48):8991–8998

    Article  Google Scholar 

  16. Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850

    Article  Google Scholar 

  17. MaHam A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721

    Article  Google Scholar 

  18. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  Google Scholar 

  19. Byrne SJ, Williams Y, Davies A, Corr SA, Rakovich A, Gun’ko YK, Rakovich YP, Donegan JF, Volkov Y (2007) “Jelly dots”: synthesis and cytotoxicity studies of CdTe quantum dot–gelatin nanocomposites. Small 3(7):1152–1156

    Article  Google Scholar 

  20. Chen L, Siemiarczuk A, Hai H, Chen Y, Huang G, Zhang J (2014) Development of biocompatible and proton-resistant quantum dots assembled on gelatin nanospheres. Langmuir 30(7):1893–1899

    Article  Google Scholar 

  21. Wang Y, Chen H, Ye C, Hu Y (2008) Synthesis and characterization of CdTe quantum dots embedded gelatin nanoparticles via a two-step desolvation method. Mater Lett 62(19):3382–3384

    Article  Google Scholar 

  22. Chen L, Willoughby A, Zhang J (2014) Luminescent gelatin nanospheres by encapsulating CdSe quantum dots. Luminescence 29(1):74–78

    Article  Google Scholar 

  23. Girija Aswathy R, Sivakumar B, Brahatheeshwaran D, Ukai T, Yoshida Y, Maekawa T, Kumar SD (2011) Biocompatible fluorescent jelly quantum dots for bioimaging. Mater Express 1(4):291–298

    Article  Google Scholar 

  24. Mansur HS, Mansur AA, Curti E, De Almeida MV (2012) Bioconjugation of quantum-dots with chitosan and N,N,N-trimethyl chitosan. Carbohydr Polym 90(1):189–196

    Article  Google Scholar 

  25. Gao Z, Shen G, Zhao X, Dong N, Jia P, Wu J, Cui D, Zhang Y, Wang Y (2013) Carbon dots: a safe nanoscale substance for the immunologic system of mice. Nanoscale Res Lett 8(1):276

    Article  Google Scholar 

  26. Wang J, Qiu J (2016) A review of carbon dots in biological applications. J Mater Sci 51(10):4728–4738. https://doi.org/10.1007/s10853-016-9797-7

    Article  Google Scholar 

  27. Purcell WT, Ettinger DS (2003) Novel antifolate drugs. Curr Oncol Rep 5(2):114–125

    Article  Google Scholar 

  28. Visser K, Van der Heijde D (2009) Risk and management of liver toxicity during methotrexate treatment in rheumatoid and psoriatic arthritis: a systematic review of the literature. Clin Exp Rheumatol 27(6):1017–1025

    Google Scholar 

  29. Grim J, Chládek J, Martínková J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42(2):139–151

    Article  Google Scholar 

  30. Abolmaali SS, Tamaddon AM, Dinarvand R (2013) A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol 71(5):1115–1130

    Article  Google Scholar 

  31. Chen J, Huang L, Lai H, Lu C, Fang M, Zhang Q, Luo X (2013) Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol Pharm 11(7):2213–2223

    Article  Google Scholar 

  32. Rahimi M, Shojaei S, Safa KD, Ghasemi Z, Salehi R, Yousefi B, Shafiei-Irannejad V (2017) Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem 41(5):2160–2168

    Article  Google Scholar 

  33. Yang L, Jiang W, Qiu L, Jiang X, Zuo D, Wang D, Yang L (2015) One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7(14):6104–6113

    Article  Google Scholar 

  34. Rezaei SJT, Abandansari HS, Nabid MR, Niknejad H (2014) pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs. J Colloid Interface Sci 425:27–35

    Article  Google Scholar 

  35. Li W, Li J, Gao J, Li B, Xia Y, Meng Y, Yu Y, Chen H, Dai J, Wang H (2011) The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32(15):3832–3844

    Article  Google Scholar 

  36. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  Google Scholar 

  37. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420

    Article  Google Scholar 

  38. Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, Xie Z, Gao H, Jing X, Sun Z (2015) Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9(11):11455–11461

    Article  Google Scholar 

  39. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomedi J 18(1):34–40

    Google Scholar 

  40. Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102(43):8360–8363

    Article  Google Scholar 

  41. Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13

    Article  Google Scholar 

  42. Rahman M, Dey K, Parvin F, Sharmin N, Khan RA, Sarker B, Nahar S, Ghoshal S, Khan M, Billah MM (2011) Preparation and characterization of gelatin-based PVA film: effect of gamma irradiation. Int J Polym Mater 60(13):1056–1069

    Article  Google Scholar 

  43. Peng H, Xiong H, Li J, Xie M, Liu Y, Bai C, Chen L (2010) Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem 121(1):23–28

    Article  Google Scholar 

  44. Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3(1):64–73

    Article  Google Scholar 

  45. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med 11(2):313–327

    Article  Google Scholar 

  46. Bajpai A, Choubey J (2005) Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles and drug-biopolymer interaction. J Macromol Sci Part A Pure Appl Chem 42(3):253–275

    Article  Google Scholar 

  47. Kimelberg HK, Tracy TF, Biddlecome SM, Bourke RS (1976) The effect of entrapment in liposomes on the in vivo distribution of [3H] methotrexate in a primate. Cancer Res 36(8):2949–2957

    Google Scholar 

  48. Guo M, Yan Y, Liu X, Yan H, Liu K, Zhang H, Cao Y (2010) Multilayer nanoparticles with a magnetite core and a polycation inner shell as pH-responsive carriers for drug delivery. Nanoscale 2(3):434–441

    Article  Google Scholar 

  49. Meloun M, Ferenčíková Z, Vrána A (2010) The thermodynamic dissociation constants of methotrexate by the nonlinear regression and factor analysis of multiwavelength spectrophotometric pH-titration data. Open Chem 8(3):494–507

    Article  Google Scholar 

  50. Ghorbani M, Hamishehkar H, Arsalani N, Entezami AA (2016) A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release. Mater Sci Eng, C 68:436–444

    Article  Google Scholar 

  51. Ghorbani M, Hamishehkar H (2017) Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int J Pharm 520(1):126–138

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Tabriz and the Drug Applied Research Center, Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasser Arsalani or Hamed Hamishehkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad-Mokhtari, P., Arsalani, N., Ghorbani, M. et al. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting. J Mater Sci 53, 10679–10691 (2018). https://doi.org/10.1007/s10853-018-2371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2371-8

Keywords

Navigation