Skip to main content
Log in

Photoactive multi-walled carbon nanotubes: synthesis and utilization of benzoin functional MWCNTs

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study describes a facile method for the synthesis of functionalized multi-walled carbon nanotubes (MWCNTs) carrying photoactive group. The synthesis of MWCNTs-based macro-photoinitiator was achieved by the esterification reaction between benzoin moiety and acyl chloride functional MWCNTs. Synthesized MWCNT-based photoinitiator (MWCNTs–benzoin) was used in the photopolymerization of styrene to yield polystyrene (PS)-grafted MWCNTs (MWCNTs–PS) by “grafting from” method. The efficiency of MWCNTs–benzoin photoinitiator was determined by evaluating the effect of initiator to monomer ratio and reaction period on photopolymerization of styrene. Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy analyses confirmed the covalent bonding for functionalization of MWCNTs and determined the final structures. Thermogravimetric analysis, gel permeation chromatography and UV spectroscopy were performed to evaluate the grafting efficiency of PS that covalently grafted to MWCNTs, and high efficiency of MWCNTs–benzoin as a macro-photoinitiator was also confirmed. Scanning electron microscopy was used to determine the surface morphology of functionalized MWCNTs and MWCNTs–PS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans A Math Phys Eng Sci 362:2065–2098

    Article  Google Scholar 

  3. Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131:13200–13201

    Article  Google Scholar 

  4. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  5. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884

    Article  Google Scholar 

  6. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B119:105–118

    Article  Google Scholar 

  7. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602

    Article  Google Scholar 

  8. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  Google Scholar 

  9. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  10. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  11. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300:775–778

    Article  Google Scholar 

  12. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev 2:29–37

    Google Scholar 

  13. Wepasnick K, Smith B, Bitter J, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014

    Article  Google Scholar 

  14. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    Article  Google Scholar 

  15. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9:4000–4008

    Article  Google Scholar 

  16. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157

    Article  Google Scholar 

  17. Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo ZX, Yongfang L, Daoban Z (2003) Large scale preparation of solubilized carbon nanotubes. Chem Mater 15:3256–3260

    Article  Google Scholar 

  18. Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Commun 31:247–257

    Article  Google Scholar 

  19. Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater 17:1198–1202

    Article  Google Scholar 

  20. Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15:3198–3201

    Article  Google Scholar 

  21. Zhao B, Hu H, Haddon RC (2004) Synthesis and properties of a water-soluble single-walled carbon nanotube–poly(m-aminobenzene sulfonic acid) graft copolymer. Adv Funct Mater 14:71–76

    Article  Google Scholar 

  22. Peng H, Alemany LB, Margrave JL, Khabashesku VN (2003) Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 125:15174–15182

    Article  Google Scholar 

  23. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  Google Scholar 

  24. Smith B, Wepasnick K, Schrote KE, Bertele AR, Ball WP, O’Melia C, Fairbrother DH (2009) Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ Sci Technol 43:819–825

    Article  Google Scholar 

  25. Bergeret C, Cousseau J, Fernandez V, Mevellec J-Y, Lefrant S (2008) Spectroscopic evidence of carbon nanotubes’ metallic character loss induced by covalent functionalization via nitric acid purification. J Phys Chem C 112:16411–16416

    Article  Google Scholar 

  26. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  27. Lingling L, Wenjun H, Jun S, Jianjun W, Chuanxiang Q, Lixing D (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330. https://doi.org/10.1007/s10853-014-8039-0

    Article  Google Scholar 

  28. Gao C, Duan CV, Jin YZ, Li W, Armes SP (2005) Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules 38:8634–8648

    Article  Google Scholar 

  29. Cheng J, Fernando KAS, Veca LM, Sun Y-P, Lamond AI, Lam YW, Cheng SH (2008) Reversible accumulation of PEGylated singlewalled carbon nanotubes in the mammalian nucleus. ACS Nano 2:2085–2094

    Article  Google Scholar 

  30. Khun NW, Troconis BCR, Frankel GS (2014) Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog Org Coat 77:72–80

    Article  Google Scholar 

  31. Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353

    Article  Google Scholar 

  32. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  33. Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G (2009) Radical grafting of polyethylene onto MWCNTs: a model compound. Polymer 50:2535–2543

    Article  Google Scholar 

  34. Pramanik NB, Singha NK (2015) Direct functionalization of multi-walled carbon nanotubes (MWCNTs) via grafting of poly(furfuryl methacrylate) using Diels–Alder “click chemistry” and its thermoreversibility. RSC Adv 5:94321–94327

    Article  Google Scholar 

  35. Yang C, Guenzi M, Cicogna F, Gambarotti C, Filippone G, Pinzino C, Passaglia E, Dintcheva NT et al (2016) Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction. Polymer 65:48–56

    Google Scholar 

  36. Ernould B, Bertrand O, Minoia A, Lazzaroni R, Vlad A, Gohy JF (2017) Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a “grafting to” approach. RSC Adv 7:17301–17310

    Article  Google Scholar 

  37. Xu Y, Gao C, Kong H, Yan D, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853

    Article  Google Scholar 

  38. Luo Y-L, Bai R-X, Xu F, Chen Y-S, Li H, Dai S-S, Ma W-B (2016) Novel multiwalled carbon nanotube grafted with polyethylene glycol-block-polystyrene nanohybrids: ATRP synthesis and detection of benzene vapor. J Mater Sci 51:1363–1375. https://doi.org/10.1007/s10853-015-9455-5

    Article  Google Scholar 

  39. Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 43:2138–2142

    Article  Google Scholar 

  40. Liu Y, Adronov A (2004) Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization. Macromolecules 37:4755–4760

    Article  Google Scholar 

  41. Qu L, Veca LM, Lin Y, Kitaygorodskiy A, Chen B, McCall AM, Connell JW, Sun YP (2005) Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface. Macromolecules 38:10328–10331

    Article  Google Scholar 

  42. Plambeck L Jr (1956) Photographic preparation of relief images. US Patent 2760863

  43. Esen DS, Arsu N, Silva JP, Jockusch S, Turro NJ (2013) Benzoin type photoinitiator for free radical polymerization. J Polym Sci Polym Chem 51:1865–1871

    Article  Google Scholar 

  44. Frick E, Schweigert C, Noble BB, Ernst HA, Lauer A, Liang Y, Dominik V, Coote ML et al (2016) Toward a quantitative description of radical photoinitiator structure–reactivity correlations. Macromolecules 49:80–89

    Article  Google Scholar 

  45. Yağcı Y, Önen A, Schnabel W (1991) Block copolymers by combination of radical and promoted cationic polymerization routes. Macromolecules 24:4620–4623

    Article  Google Scholar 

  46. Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP (2001) Defunctionalization of functionalized carbon nanotubes. Nano Lett 8:439–441

    Article  Google Scholar 

  47. Tucureanu V, Matei A, Avram AM (2016) FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46:502–520

    Article  Google Scholar 

  48. Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press, Boca Raton

    Google Scholar 

  49. Jorio A, Pimenta MA, Filho AGS, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance raman scattering. New J Phys 139:1–17

    Google Scholar 

  50. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  Google Scholar 

  51. Zhaoa Z, Yanga Z, Huc Y, Li J, Fana X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşen Önen.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaynak, N., Önen, A. & Karahasanoğlu, M. Photoactive multi-walled carbon nanotubes: synthesis and utilization of benzoin functional MWCNTs. J Mater Sci 53, 9598–9610 (2018). https://doi.org/10.1007/s10853-018-2233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2233-4

Keywords

Navigation