Skip to main content
Log in

Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reprocessability and reparability are possible with thermoplastics but are rarely encountered with thermosets, which are used much more frequently in many applications other than thermoplastics. A novel cyclolinear cyclotriphosphazene-based epoxy resin (CTP-EP) was successfully synthesized, characterized, and cured by the addition of the disulfide-containing aromatic diamine hardener DTDA to form a new epoxy vitrimer, CTP-EP/DTDA. This epoxy vitrimer behaves as a typical thermoset at ambient conditions but can be quickly reprocessed at elevated temperatures by hot-pressing, similar to a thermoplastic. The outstanding multi-self-healing performance of this dynamic epoxy system is attributed to the radical-mediated aromatic disulfide exchange mechanism. After repairing itself three times, this epoxy system still had a high healing efficiency of 89.8%. In addition, this newly obtained epoxy system also possesses good thermal stability and excellent flame retardancy due to the cyclotriphosphazene structures in the epoxy resin. The multifunctional properties of this material make it a promising candidate for a variety of applications, such as fiber-reinforced polymer composites in the aerospace and automotive industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN (2001) Autonomic healing of polymer composites. Nature 409:794–797

    CAS  Google Scholar 

  2. Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446–7467

    CAS  Google Scholar 

  3. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710. https://doi.org/10.1023/B:JMSC.0000016173.73733.dc

    Article  CAS  Google Scholar 

  4. Zhang H, Tan J, Liu Y, Hou CP, Ma Y, Gu JW, Zhang BL, Zhang HP, Zhang QY (2017) Design and fabrication of robust, rapid self-healable, superamphiphobic coatings by a liquid-repellent “glue + particles” approach. Mater Des 135:16–25

    CAS  Google Scholar 

  5. Vahedi V, Pasbakhsh P, Piao CS, Seng CE (2015) A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 3:16005–16012

    CAS  Google Scholar 

  6. Liberata G, Marialuigia R, Carlo N, Pasquale L, Annaluisa M, Wolfgang HB (2014) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23:045001

    Google Scholar 

  7. Guadagno L, Raimondo M, Naddeo C, Longo P (2013) Application of self-healing materials in aerospace engineering. Self-healing polymers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  8. Gurumurthy BM, Hiremath AR, Shivaprakash YM, Gowrishankar MC, Jayashree PK (2016) Self healing materials: a new era in material technology: a review. Int J Appl Eng Res 11:1373–1378

    Google Scholar 

  9. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    CAS  Google Scholar 

  10. Longo P, Mariconda A, Calabrese E et al (2017) Development of a new stable ruthenium initiator suitably designed for self-repairing applications in high reactive environments. J Ind Eng Chem 54:234–251

    CAS  Google Scholar 

  11. Bejan A, Lorente S, Wang K-M (2006) Networks of channels for self-healing composite materials. J Appl Phys 100:033528

    Google Scholar 

  12. Guadagno L, Longo P, Raimondo M, Naddeo C, Mariconda A, Sorrentino A, Vittoria V, Iannuzzo G, Russo S (2010) Cure behavior and mechanical properties of structural self-healing epoxy resins. J Polym Sci Pol Phys 48:2413–2423

    CAS  Google Scholar 

  13. Raimondo M, Guadagno L (2013) Healing efficiency of epoxy-based materials for structural applications. Polym Compos 34:1525–1532

    CAS  Google Scholar 

  14. Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A (2014) Self-healing materials for structural applications. Polym Eng Sci 54:777–784

    CAS  Google Scholar 

  15. Enke M, Döhler D, Bode S, Binder WH, Hager MD, Schubert US (2016) Intrinsic self-healing polymers based on supramolecular interactions: state of the art and future directions. In: Hager MD, van der Zwaag S, Schubert US (eds) Self-healing materials. Springer, Cham

    Google Scholar 

  16. Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143

    CAS  Google Scholar 

  17. Ce Yuan MQ, Zhang MZ Rong (2014) Application of alkoxyamine in self-healing of epoxy. J Mater Chem A 2:6558–6566

    Google Scholar 

  18. Rekondo A, Martin R, Ruiz A, de Luzuriaga G, Cabanero HJ Grande, Odriozola I (2014) Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horiz 1:237–240

    CAS  Google Scholar 

  19. Capelot M, Montarnal D, Tournilhac F, Leibler L (2012) Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc 134:7664–7667

    CAS  Google Scholar 

  20. Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296

    CAS  Google Scholar 

  21. Guadagno L, Naddeo C, Raimondo M, Barra G, Vertuccio L, Sorrentino A, Binder WH, Kadlec M (2017) Development of self-healing multifunctional materials. Compos Part B-Eng 128:30–38

    CAS  Google Scholar 

  22. Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W (2013) Healable supramolecular polymers. Polym Chem 4:4860–4870

    CAS  Google Scholar 

  23. Nakahata M, Takashima Y (2011) Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun 2:511

    Google Scholar 

  24. Hu L, Cheng X, Zhang A (2015) A facile method to prepare UV light-triggered self-healing polyphosphazenes. J Mater Sci 50:2239–2346. https://doi.org/10.1007/s10853-014-8786-y

    Article  CAS  Google Scholar 

  25. Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang CY, Nie ZH (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605

    CAS  Google Scholar 

  26. Canadell J, Goossens H, Klumperman B (2011) Self-healing materials based on disulfide links. Macromolecules 44:2536–2541

    CAS  Google Scholar 

  27. Pepels M, Filot I, Klumperman B, Goossens H (2013) Self-healing systems based on disulfide-thiol exchange reactions. Polym Chem 4:4955–4965

    CAS  Google Scholar 

  28. Matxain JM, Asua JM, Ruiperez F (2016) Design of new disulfide-based organic compounds for the improvement of self-healing materials. Phys Chem Chem Phys 18:1758–1770

    CAS  Google Scholar 

  29. Martin R, Rekondo A, Ruiz A, de Luzuriaga G, Cabanero HJ Grande, Odriozola I (2014) The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J Mater Chem A 2:5710–5715

    CAS  Google Scholar 

  30. Engelberg PI, Tesoro GC (1990) Mechanical and thermal properties of epoxy resins with reversible crosslinks. Polym Eng Sci 30:303–307

    CAS  Google Scholar 

  31. Tuten BT, Chao D, Lyon CK, Berda EB (2012) Single-chain polymer nanoparticles via reversible disulfide bridges. Polym Chem 3:3068–3071

    CAS  Google Scholar 

  32. de Luzuriaga AR, Martin R, Markaide N, Rekondo A, Cabanero G, Rodriguez J, Odriozola I (2016) Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horiz 3:241–247

    Google Scholar 

  33. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334:965–968

    CAS  Google Scholar 

  34. Denissen W, Winne JM, Du Prez FE (2016) Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 7:30–38

    CAS  Google Scholar 

  35. Liu H, Wang X, Wu D (2015) Synthesis of a novel linear polyphosphazene-based epoxy resin and its application in halogen-free flame-resistant thermosetting systems. Polym Degrad Stabil 118:45–58

    CAS  Google Scholar 

  36. Barontini F, Cozzani V, Petarca L (2001) Thermal stability and decomposition products of hexabromocyclododecane. Ind Eng Chem Res 40:3270–3280

    CAS  Google Scholar 

  37. Gu JW, Zhang GC, Dong SL, Zhang QY, Kong J (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Tech 201:7835–7841

    CAS  Google Scholar 

  38. Tm D Nguyen, Chang S, Condon B, Uchimiya M, Fortier C (2012) Development of an environmentally friendly halogen-free phosphorus-nitrogen bond flame retardant for cotton fabrics. Polym Adv Technol 23:1555–1563

    Google Scholar 

  39. Zhao B, Liang WJ, Wang JS, Li F, Liu YQ (2016) Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym Degrad Stabil 133:162–173

    CAS  Google Scholar 

  40. Lin CH, Chang SL, Wei TP, Ding SH, Su WC (2010) Facile, one-pot synthesis of phosphinate-substituted bisphenol A and its alkaline-stable diglycidyl ether derivative. Polym Degrad Stabil 95:1167–1176

    CAS  Google Scholar 

  41. Zhou LS, Zhang GC, Li JT, Jing ZX, Qin JB, Feng YJ (2017) The flame retardancy and thermal stability properties of flame-retarded epoxy resins based on α-hydroxyphosphonate cyclotriphosphazene. J Therm Anal Calorim 129:1667–1678

    CAS  Google Scholar 

  42. Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L (2013) Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes: synthesis and characterization. J Appl Polym Sci 129:2435–2442

    CAS  Google Scholar 

  43. Park I, Sheiko SS, Nese A, Matyjaszewski K (2009) Molecular tensile testing machines: breaking a specific covalent bond by adsorption-induced tension in brushlike macromolecules. Macromolecules 42:1805–1807

    CAS  Google Scholar 

  44. Azcune I, Odriozola I (2016) Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur Polym J 84:147–160

    CAS  Google Scholar 

  45. Nevejans S, Ballard N, Miranda JI, Reck B, Asua JM (2016) The underlying mechanisms for self-healing of poly(disulfide)s. Phys Chem Chem Phys 18:27577–27583

    CAS  Google Scholar 

  46. Bai Y, Wang X, Wu D (2012) Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics. Ind Eng Chem Res 51:15064–15074

    CAS  Google Scholar 

  47. Liu H, Wang XD, Wu DZ (2014) Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy. Polym Degrad Stabil 103:96–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, G., Feng, Y. et al. Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J Mater Sci 53, 7030–7047 (2018). https://doi.org/10.1007/s10853-018-2015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2015-z

Navigation