Skip to main content
Log in

Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, high-energy electron beam irradiation was used for the first time for graft polymerization of acrylic acid onto the surface of carbon black (CB) to prepare water-dispersible CB. The grafted CB was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis and X-ray photoelectron spectroscopy. The results indicate that polyacrylic acid (PAA) has been successfully grafted onto the surface of CB. The particle size and dispersion stability of unmodified and modified CBs in aqueous solution were determined by dynamic light scattering, transmission electron microscopy and ultraviolet–visible spectrophotometer. The results show that the grafted CB has smaller average aggregate size and better dispersion than unmodified CB. In addition, there is no significant difference in the grafting degree among grafted CBs prepared in nitrogen and air at different irradiation doses, indicating that oxygen and irradiation dose have a negligible effect on the grafting degree of PAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Donnet JB, Bansal RC, Wang MJ (1993) Carbon black: science and technology, 2nd edn. Marcel Dekker, New York. ISBN 082478975X

    Google Scholar 

  2. West DHD, Mcbrierty VJ, Delaney CFG (1979) A positron annihilation study of carbon black and carbon-black-filled polybutadiene. Appl Phys 18:85–92. https://doi.org/10.1007/s10853-017-1680-7

    Article  Google Scholar 

  3. Iijima M, Yamazaki M, Nomura Y, Kamiya H (2013) Effect of structure of cationic dispersants on stability of carbon black nanoparticles and further processability through layer-by-layer surface modification. Chem Eng Sci 85:30–37. https://doi.org/10.1016/j.ces.2012.02.020

    Article  Google Scholar 

  4. Zhang W, Blackburn RS, DehghaniSanij AA (2009) Carbon black reinforced epoxy resin nanocomposites as bending sensors. J Compos Mater 43:367–376. https://doi.org/10.1177/0021998308099308

    Article  Google Scholar 

  5. Francis LF, Grunlan JC, Sun J, Gerberich WW (2007) Conductive coatings and composites from latex-based dispersions. Colloids Surf A 311:48–54. https://doi.org/10.1016/j.colsurfa.2007.08.026

    Article  Google Scholar 

  6. Zhu L, Lu Y, Wang Y, Zhang L, Wang W (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl Surf Sci 258:5387–5393. https://doi.org/10.1016/j.apsusc.2012.02.016

    Article  Google Scholar 

  7. Zhou X, Li Q, Wu C (2008) Grafting of maleic anhydride onto carbon black surface via ultrasonic irradiation. Appl Organomet Chem 22:78–81. https://doi.org/10.1002/aoc.1352

    Article  Google Scholar 

  8. Hauptman N, Gunde MK, Kunaver M, Bešter-Rogac M (2011) Influence of dispersing additives on the conductivity of carbon black pigment dispersion. J Coat Technol Res 8:553–561. https://doi.org/10.1007/s11998-011-9330-5

    Article  Google Scholar 

  9. Shi PW, Li QY, Li YC, Wu CF (2014) Preparation and characterization of poly(sodium 4-styrenesulfonate)-decorated hydrophilic carbon blackby one-step in situ ball milling. Colloids Surf A 443:135–140. https://doi.org/10.1016/j.colsurfa.2013.10.060

    Article  Google Scholar 

  10. Buttrya DA, Pengb JCM, Donnetb JB, Rebouillatc S (1999) Immobilization of amines at carbon fiber surfaces. Carbon 37:1929–1940. https://doi.org/10.1016/s0008-6223(99)00064-0

    Article  Google Scholar 

  11. Donnet JB, Rebouillat S, Wang TK, Peng J (1998) Carbon fibers, 3rd edn. Marcel Dekker Inc, New York. ISBN 0824701720

    Google Scholar 

  12. Chen X, Farber M, Gao Y, Kulaots I et al (2003) Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon 41:1489–1500. https://doi.org/10.1016/s0008-6223(03)00053-8

    Article  Google Scholar 

  13. Li Q, Wu G, Ma Y, Wu C (2007) Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation. Carbon 45:2411–2416. https://doi.org/10.1016/j.carbon.2007.06.052

    Article  Google Scholar 

  14. Itoh Y, Ozaki K, Maezawa R (2013) Hydrolyzable-emulsifier-containing polymer latices as dispersants and binders for waterborne carbon black paint. J Appl Polym Sci 130:3869–3873. https://doi.org/10.1002/app.39479

    Google Scholar 

  15. Tsubokawa N, Satoh T, Murota M, Sato S, Shimizu H (2001) Grafting of hyperbranched poly(amidoamine) onto carbon black surfaces using dendrimer synthesis methodology. Polym Adv Technol 12:596–602. https://doi.org/10.1002/pat.148

    Article  Google Scholar 

  16. Liu T, Jia S, Tomasz Kowalewski A, Matyjaszewski K et al (2003) Grafting poly(n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization. Langmuir 19:6342–6345. https://doi.org/10.1021/la034219d

    Article  Google Scholar 

  17. Reichmanis E, Nalamasu O, Houlihan FM, Novembre AE (2015) Radiation chemistry of polymeric materials: novel chemistry and applications for microlithography. Polym Int 48:1053–1059. https://doi.org/10.1002/(SICI)1097-0126(199910)48:10<1053::AID-PI268>3.0.CO;2-T

    Article  Google Scholar 

  18. Iwata H, Nakanoya T, Morohashi H, Chen J et al (2006) Novel gas and contamination sensor materials from polyamide-block-poly(ethylene oxide)-grafted carbon black. Sens Actuat B Chem 113:875–882. https://doi.org/10.1109/icsens.2003.1279080

    Article  Google Scholar 

  19. Singh D, Singh NL, Qureshi A, Gavade C, Avasthi DK et al (2010) Electrical and thermal studies on the polyvinylchloride/carbon black composites induced by high energy ion beam. Integr Ferroelectr 117:85–96. https://doi.org/10.1080/10584587.2010.489429

    Article  Google Scholar 

  20. Trenikhin MV, Ivashchenko OV, Eliseev VS (2015) Electron microscopy investigation of structural transformation of carbon black under influence of high-energy electron beam. Fuller Nanotub Carbon Nanostruct 23:801–806. https://doi.org/10.1080/1536383x.2014.1003639

    Article  Google Scholar 

  21. Sapinski M, Dehning B, Guerrero A, Meyer M, Kroyer T, Switzerland G, Carbon fiber damage in particle beam. In: Proceedings of HB2010, Morschach, Switzerland

  22. Wu Y, Wen S, Shen J, Jiang J, Hu S, Zha L, Liu L (2015) Improved dynamic properties of natural rubber filled with irradiation-modified carbon black. Radiat Phys Chem 111:91–97. https://doi.org/10.1016/j.radphyschem.2015.02.020

    Article  Google Scholar 

  23. Sahoo BP, Naskar K, Dubey KA, Choudhary RNP, Tripathy DK (2013) Study of dielectric relaxation behavior of electron beam-cured conductive carbon black-filled ethylene acrylic elastomer. J Mater Sci 48:702–713. https://doi.org/10.1007/s10853-012-6782-7

    Article  Google Scholar 

  24. Ahmad A, Mohd DH, Abdullah I (2004) Electron beam irradiation of carbon black filled linear low-density polyethylene. J Mater Sci 39:1459–1461. https://doi.org/10.1023/b:jmsc.0000013917.04266.79

    Article  Google Scholar 

  25. Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X (2015) Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 31:708–722. https://doi.org/10.1016/j.jmst.2015.03.002

    Article  Google Scholar 

  26. Bo Y, Cui J, Cai Y, Xu S (2016) Preparation and characterization of poly(methylmethacrylate) and poly(maleicanhydride-co-diallylphthalate) grafted carbon black through γ-ray irradiation. Radiat Phys Chem 119:236–246. https://doi.org/10.1016/j.radphyschem.2015.11.005

    Article  Google Scholar 

  27. Xu H, Cao Y, He X, Wu Y, Zhang Y, Wu C (2009) Influence of in situ grafting on the dispersion of carbon black in solvents and natural rubber. J Macromol Sci B 48:1190–1200. https://doi.org/10.1080/00222340903275768

    Article  Google Scholar 

  28. Socrates G (1994) Infrared characteristic group frequencies: tables and charts, 2nd edn. Wiley, New York. ISBN 0471852988

    Google Scholar 

  29. Lee S, Lee H, Sim JH, Sohn D (2014) Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface. Macromol Res 22:165–172. https://doi.org/10.1007/s13233-014-2025-x

    Article  Google Scholar 

  30. Ding W, Wang L (2014) Synthesis of poly(acrylic acid) grafted carbon black and its application for sensing ethanol. J Polym Res 21:1–7. https://doi.org/10.1007/s10965-014-0425-4

    Article  Google Scholar 

  31. Li Q, Wu G, Zhang X, Wu C (2006) Preparation of poly(n-butyl acrylates) en-capsulated carbon black via ultrasonic irradiation initiating emulsion poly-merization. Polym J 38:1245–1250. https://doi.org/10.1295/polymj.pj2006053

    Article  Google Scholar 

  32. Lu S, Duan M, Lin S (2003) Synthesis of superabsorbent starch-graft-poly(potassiumacrylate-co-acrylamide) and its properties. J Appl Polym Sci 88:1536–1542. https://doi.org/10.1002/app.12025

    Article  Google Scholar 

  33. Zhu L, Zhang L, Tang Y, Yang J (2013) Synthesis and adsorption of organo-montmorillonite/poly(acrylic acid) superabsorbent composite. Polym Polym Compos 21:21–26. https://doi.org/10.1016/j.polymertesting.2013.01.001

    Google Scholar 

  34. Ding W, Wang L, Yang Q et al (2013) Recent research progress on polymer grafted carbon black and its novel applications. Int Polym Proc 28:132–142. https://doi.org/10.3139/217.2678

    Article  Google Scholar 

  35. Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM (2014) Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis. Appl Surf Sci 316:315–323. https://doi.org/10.1016/j.apsusc.2014.07.174

    Article  Google Scholar 

  36. Liu H, Wang S, Xiao Y, Li X (2016) Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure. J Mater Sci-Mater Electron 27:2022–2030. https://doi.org/10.1007/s10854-015-3986-z

    Article  Google Scholar 

  37. Bao Y, Huang J, Xue P, Wang J, Li Q, Wu C, Guo W (2011) Effect of pH-responsive on the dispersion of PVM/MA grafted carbon black in water and waterborne polyurethane. J Dispers Sci Technol 32:1459–1464. https://doi.org/10.1080/01932691.2010.513312

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Thousand Talents Program of Qinghai Province and Kunlun Scholar Award Program of Qinghai Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Wang, S. & Xu, S. Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation. J Mater Sci 53, 6106–6115 (2018). https://doi.org/10.1007/s10853-017-1966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1966-9

Keywords

Navigation