Skip to main content

Advertisement

Log in

Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: vaterite, aragonite and calcite

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The synthetic anhydrous crystalline CaCO3 polymorphs—vaterite, aragonite and calcite—were tested using dilatometry and nanoindentation. Microstructural changes in the samples before and after measurements were observed under scanning electron microscope and their phase composition quantified with X-ray powder diffraction with the Rietveld method. The thermal expansion coefficients of vaterite and the hardness and elastic modulus of synthetic aragonite are reported for the first time. The physical and nanomechanical properties were measured under similar conditions for each CaCO3 polymorph. Aragonite, calcite and vaterite showed volumetric thermal expansion coefficient at 303 K of 49.2(8), 48.6(2) and 44.1(3) 10−6 K−1, respectively. The elastic modulus increased from 5(4), 16(7) to 31(8) GPa for aragonite, calcite and vaterite, respectively. Average hardness was found lower than values from the literature, ranging from 0.3 to 1.3 GPa. The results are considered of interest for the design of CaCO3-based materials for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dobrev J, Markovic P (2012) Calcite: formation, properties, and applications. Nova Science Publishers, New York

    Google Scholar 

  2. Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271. https://doi.org/10.1039/C0NR00589D

    Article  Google Scholar 

  3. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00314

    Article  Google Scholar 

  4. Yao H-B, Ge J, Mao L-B et al (2014) 25th anniversary article: artificial carbonate nanocrystals and layered structural nanocomposites inspired by Nacre: synthesis, fabrication and applications. Adv Mater 26:163–188. https://doi.org/10.1002/adma.201303470

    Article  Google Scholar 

  5. Radha AV, Navrotsky A (2013) Thermodynamics of carbonates. Rev Mineral Geochem 77:73–121. https://doi.org/10.2138/rmg.2013.77.3

    Article  Google Scholar 

  6. Balen KV, Gemert DV (1994) Modelling lime mortar carbonation. Mater Struct 27:393–398. https://doi.org/10.1007/BF02473442

    Article  Google Scholar 

  7. Cowper AD, Building Research Station, Building Research Establishment (1998) Lime and lime mortars. Donhead, Shaftesbury

    Google Scholar 

  8. Daniele V, Taglieri G (2011) Ca(OH)2 nanoparticle characterization: microscopic investigation of their application on natural stones. Mater Char 72:55–66. https://doi.org/10.2495/MC110051

    Google Scholar 

  9. Daniele V, Taglieri G, Quaresima R (2008) The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process. J Cult Herit 9:294–301. https://doi.org/10.1016/j.culher.2007.10.007

    Article  Google Scholar 

  10. Drdácký M, Slížková Z, Ziegenbalg G (2009) Α nano approach to consolidation of degraded historic lime mortars. J Nano Res 8:13–22. https://doi.org/10.4028/www.scientific.net/JNanoR.8.13

    Article  Google Scholar 

  11. Licchelli M, Malagodi M, Weththimuni M, Zanchi C (2013) Nanoparticles for conservation of bio-calcarenite stone. Appl Phys A 114:673–683. https://doi.org/10.1007/s00339-013-7973-z

    Article  Google Scholar 

  12. Natali I, Saladino ML, Andriulo F et al (2014) Consolidation and protection by nanolime: recent advances for the conservation of the graffiti, Carceri dello Steri Palermo and of the 18th century lunettes, SS. Giuda e Simone Cloister, Corniola (Empoli). J Cult Herit 15:151–158. https://doi.org/10.1016/j.culher.2013.03.002

    Article  Google Scholar 

  13. Gomez-Villalba LS, López-Arce P, Alvarez de Buergo M, Fort R (2011) Structural stability of a colloidal solution of Ca(OH)2 nanocrystals exposed to high relative humidity conditions. Appl Phys A 104:1249–1254. https://doi.org/10.1007/s00339-011-6457-2

    Article  Google Scholar 

  14. Gomez-Villalba LS, López-Arce P, Fort R (2012) Nucleation of CaCO3 polymorphs from a colloidal alcoholic solution of Ca(OH) nanocrystals exposed to low humidity conditions. Appl Phys A 106:213–217. https://doi.org/10.1007/s00339-011-6550-6

    Article  Google Scholar 

  15. López-Arce P, Gómez-Villalba LS, Martínez-Ramírez S et al (2011) Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder Technol 205:263–269. https://doi.org/10.1016/j.powtec.2010.09.026

    Article  Google Scholar 

  16. Rodriguez-Navarro C, Elert K, Ševčík R (2016) Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. CrystEngComm 35:6594–6607. https://doi.org/10.1039/C6CE01202G

    Article  Google Scholar 

  17. Fiori C, Vandini M, Prati S, Chiavari G (2009) Vaterite in the mortars of a mosaic in the Saint Peter basilica, Vatican (Rome). J Cult Herit 10:248–257. https://doi.org/10.1016/j.culher.2008.07.011

    Article  Google Scholar 

  18. Marey Mahmoud HH, Ali MF, Pavlidou E et al (2011) Characterization of plasters from ptolemaic baths: new excavations near the Karnak temple complex, Upper Egypt. Archaeometry 53:693–706. https://doi.org/10.1111/j.1475-4754.2010.00572.x

    Article  Google Scholar 

  19. Signorelli S (1996) The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral. Mineral Mag 60:663–665. https://doi.org/10.1180/minmag.1996.060.401.13

    Article  Google Scholar 

  20. Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A et al (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71:1197–1213. https://doi.org/10.1016/j.gca.2006.11.031

    Article  Google Scholar 

  21. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  22. Fischer-Cripps AC (2011) Nanoindentation. Springer, New York

    Book  Google Scholar 

  23. Ren D, Meyers MA, Zhou B, Feng Q (2013) Comparative study of carp otolith hardness: lapillus and asteriscus. Mater Sci Eng C 33:1876–1881. https://doi.org/10.1016/j.msec.2012.10.015

    Article  Google Scholar 

  24. Müller WEG, Neufurth M, Schlossmacher U et al (2013) The sponge silicatein-interacting protein silintaphin-2 blocks calcite formation of calcareous sponge spicules at the vaterite stage. RSC Adv 4:2577–2585. https://doi.org/10.1039/C3RA45193C

    Article  Google Scholar 

  25. Presser V, Gerlach K, Vohrer A et al (2010) Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines. J Mater Sci 45:2408–2418. https://doi.org/10.1007/s10853-010-4208-y

    Article  Google Scholar 

  26. Bruet BJF, Qi HJ, Boyce MC et al (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400–2419. https://doi.org/10.1557/jmr.2005.0273

    Article  Google Scholar 

  27. Calvaresi M, Falini G, Pasquini L et al (2013) Morphological and mechanical characterization of composite calcite/SWCNT–COOH single crystals. Nanoscale 5:6944–6949. https://doi.org/10.1039/C3NR01568H

    Article  Google Scholar 

  28. Ševčík R, Pérez-Estébanez M, Viani A et al (2015) Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technol 284:265–271. https://doi.org/10.1016/j.powtec.2015.06.064

    Article  Google Scholar 

  29. Lucas A, Mouallem-Bahout M, Carel C et al (1999) Thermal expansion of synthetic aragonite condensed review of elastic properties. J Solid State Chem 146:73–78. https://doi.org/10.1006/jssc.1999.8310

    Article  Google Scholar 

  30. Salje E, Viswanathan K (1976) The phase diagram calcite-aragonite as derived from the crystallographic properties. Contrib Mineral Petrol 55:55–67. https://doi.org/10.1007/BF00372754

    Article  Google Scholar 

  31. Wu T-C, Shen AH, Weathers MS et al (1995) Anisotropic thermal expansion of calcite at high pressures; an in situ X-ray diffraction study in a hydrothermal diamond-anvil cell. Am Mineral 80:941–946. https://doi.org/10.2138/am-1995-9-1010

    Article  Google Scholar 

  32. Ye Y, Smyth JR, Boni P (2012) Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction. Am Mineral 97:707–712. https://doi.org/10.2138/am.2012.3923

    Article  Google Scholar 

  33. Gebauer D, Oliynyk V, Salajkova M et al (2011) A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale 3:3563–3566. https://doi.org/10.1039/c1nr10681c

    Article  Google Scholar 

  34. Malinova K, Gunesch M, Pancera SM et al (2012) Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique. J Colloid Interface Sci 374:61–69. https://doi.org/10.1016/j.jcis.2012.02.011

    Article  Google Scholar 

  35. Pérez-Huerta A, Cusack M, Zhu W et al (2007) Material properties of brachiopod shell ultrastructure by nanoindentation. J R Soc Interface 4:33–39. https://doi.org/10.1098/rsif.2006.0150

    Article  Google Scholar 

  36. Ševčík R, Mácová P, Pérez-Estébanez M (2015) Crystallization of aragonite from vaterite precursor during various refluxing times. Adv Mater Res 1119:466–470. https://doi.org/10.4028/www.scientific.net/AMR.1119.466

    Article  Google Scholar 

  37. Sarkar A, Mahapatra S (2010) Synthesis of all crystalline phases of anhydrous calcium carbonate. Cryst Growth Des 10:2129–2135. https://doi.org/10.1021/cg9012813

    Article  Google Scholar 

  38. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  39. Han J, Pan G, Sun W et al (2012) Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction. Sci China Technol Sci 55:616–622. https://doi.org/10.1007/s11431-011-4571-1

    Article  Google Scholar 

  40. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  41. Meyer HJ (1959) Über vaterit und seine struktur. Angew Chem 71:678–679

    Google Scholar 

  42. Demichelis R, Raiteri P, Gale JD, Dovesi R (2013) The multiple structures of vaterite. Cryst Growth Des 13:2247–2251. https://doi.org/10.1021/cg4002972

    Article  Google Scholar 

  43. Young RA (2002) The Rietveld method, Repr. Oxford University Press, Oxford

    Google Scholar 

  44. Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432. https://doi.org/10.1021/cr8002856

    Article  Google Scholar 

  45. Putnis A (1992) An introduction to mineral sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Grima NJ, Zammit V, Gatt R (2006) Negative thermal expansion. Xjenza J Malta Chamb Sci 11:17–29

    Google Scholar 

  47. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys Condens Matter 17:R217–R252. https://doi.org/10.1088/0953-8984/17/4/R03

    Article  Google Scholar 

  48. Prisco LP, Romao CP, Rizzo F et al (2013) The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12. J Mater Sci 48:2986–2996. https://doi.org/10.1007/s10853-012-7076-9

    Article  Google Scholar 

  49. Srikanth V, Subbarao EC, Rao GV (1992) Thermal expansion anisotropy, microcracking and acoustic emission of Nb2O5 ceramics. Ceram Int 18:251–261. https://doi.org/10.1016/0272-8842(92)90103-K

    Article  Google Scholar 

  50. Wardecki D, Przeniosło R, Brunelli M (2008) Internal pressure in annealed biogenic aragonite. CrystEngComm 10:1450–1453. https://doi.org/10.1039/B805508D

    Article  Google Scholar 

  51. Tai CY, Chen F-B (1998) Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE J 44:1790–1798. https://doi.org/10.1002/aic.690440810

    Article  Google Scholar 

  52. Dhami NK, Mukherjee A, Reddy MS (2016) Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol Eng 94:443–454. https://doi.org/10.1016/j.ecoleng.2016.06.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Czech Grant Agency GA ČR Grant 17-05030S and the Project No. LO1219 under the Ministry of Education, Youth and Sports National sustainability program I of Czech Republic. We thank Jaroslav Buzek for dilatometry measurements and Mgr. Petra Mácová for the pellets preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Ševčík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ševčík, R., Šašek, P. & Viani, A. Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: vaterite, aragonite and calcite. J Mater Sci 53, 4022–4033 (2018). https://doi.org/10.1007/s10853-017-1884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1884-x

Keywords

Navigation