Skip to main content

Advertisement

Log in

The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The highly flexible ZrO2/C nanofiber film was fabricated by electrospinning followed by heat treatment of stabilization and carbonization. The effects of carbonization temperature on the morphology, microstructure, and performance of ZrO2/C nanofiber film were investigated. As the temperature increases, the tetragonal phase of the ZrO2 nanoparticles gradually transformed into monoclinic phase. As a result, the mechanical and electrical properties of the ZrO2/C nanofiber film were improved. When the temperature reached 1100 °C, the ZrO2/C nanofiber film exhibited the best flexibility with the flexural modulus of 6.24 ± 0.08 MPa, the highest conductivity of 476.5 S/m, and promising electrocatalytic activity. These improvements can be ascribed to the phase transition toughening effect of ZrO2 nanoparticles, the increase in oxygen vacancy concentration in ZrO2, and the improvement in graphitization of carbon matrix. Hence, the ZrO2/C nanofiber film served as a counter electrode for flexible dye-sensitized solar cells, and an efficiency of 2.97% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Mahmut D, Ozkan Y, Lu Y, Fang XM, Jiang H, Huseyin K, Zhang XW (2015) Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries. Electrochim Acta 169:52–60

    Article  Google Scholar 

  2. Wan YZ, Yang ZW, Xiong GY, Guo RS, Liu Z, Luo HL (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium–ion batteries. J Power Sources 294:414–419

    Article  Google Scholar 

  3. Zhou GY, Xiong TR, Jiang SH, Jian SJ, Zhou ZP, Hou HQ (2016) Flexible titanium carbide–carbon nanofibers with high modulus and high conductivity by electrospinning. Mater Lett 165:91–94

    Article  Google Scholar 

  4. Liu Y, Zhou JY, Chen LL, Zhang P, Fu WB, Hao ZH (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7:23515–23520

    Article  Google Scholar 

  5. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-Doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74

    Article  Google Scholar 

  6. Zhang F, Yuan CZ, Zhu JJ, Wang J, Zhang XG (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23:3909–3915

    Article  Google Scholar 

  7. Zhao BT, Cai R, Jiang SM, Sha YJ, Shao ZP (2012) Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium–ion batteries. Electrochim Acta 85:636–643

    Article  Google Scholar 

  8. Bhavana NJ, Seongpil A, Hong SJ, Kyo YS, Hyun GP (2016) Flexible, freestanding, and binder-free SnOx-ZnO/carbon nanofiber composites for lithium ion battery anodes. ACS Appl Mater Interfaces 8:9446–9453

    Article  Google Scholar 

  9. Jiang H, Ge YQ, Fu K, Lu Y, Chen C, Zhu JD, Dirican M, Zhang XW (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102. doi:10.1007/s10853-014-8666-5

    Article  Google Scholar 

  10. Bo-Hye K, Chang HK, Kap SY (2010) SiC/SiO2 coating for improving the oxidation resistive property of carbon nanofiber. Appl Surf Sci 257:1607–1611

    Article  Google Scholar 

  11. Zhang LF, Aboagye A, Kelkar A, Lai CL, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  12. Teo W, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:89–106

    Article  Google Scholar 

  13. Inagaki M, Yang Y, Kang FY (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24:2547–2566

    Article  Google Scholar 

  14. Zhu PW, Hong YL, Liu BB, Zou GT (2009) The synthesis of titanium carbide-reinforced carbon nanofibers. Nanotechnology 20:255603

    Article  Google Scholar 

  15. Soojung K, Bharat B, Chang KB, Soon-Jin K, Han-Ik J, Kwang BY, Sungho L (2014) Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization. Appl Surf Sci 320:218–224

    Article  Google Scholar 

  16. Yin X, Song LX, Xie XY, Zhou YY, Guan YL, Xiong J (2016) Preparation of the flexible ZrO2/C composite nanofibrous film via electrospinning. Appl Phys A 122:678

    Article  Google Scholar 

  17. Li LP, Zhang PG, Liang JD, Guo SM (2010) Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing. Ceram Int 36:589–594

    Article  Google Scholar 

  18. Din HP, Virkar AV, Liu F (2012) Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ion 215:16–23

    Article  Google Scholar 

  19. Beg S, Sarita, Varshney P (2007) Study of electrical conductivity changes and phase transitions in Co3O4 doped ZrO2. Phase Transit 80:867–873

    Article  Google Scholar 

  20. Ajoy KP, Koushik B (2016) Effect of hydrothermal treatment on tribological properties of alumina and zirconia based bioceramics. Ceram Int 42:2306–2316

    Article  Google Scholar 

  21. Vasudevan R, Karthik T, Ganesan S, Jayavel R (2013) Effect of microwave sintering on the structural and densification behavior of sol–gel derived zirconia toughened alumina (ZTA) nanocomposites. Ceram Int 39:3195–3204

    Article  Google Scholar 

  22. Samson K, Sliwa M, Socha RP, Góra-Marek K, Mucha D, Paul JF (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4:3730–3741

    Article  Google Scholar 

  23. Daesub H, Horim L, Sung-Yeon J, Seong M, Dongho K, Yongsok S, Dong YK (2011) Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 3:2719–2725

    Article  Google Scholar 

  24. Horim L, Daesub H, Sung-Yeon J, Seong M, Dongho K, Yongsok S, Dong YK (2012) Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl Mater Interfaces 4:3308–3315

    Article  Google Scholar 

  25. Xiao XP, Song YH, Liu HY, Xie MY, Hou HQ, Wang L, Li Z (2013) Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing. J Mater Sci 14:4843–4850. doi:10.1021/acssuschemeng.5b01150

    Article  Google Scholar 

  26. Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, Reneker DH, Fong H (2010) Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 51:2360–2367

    Article  Google Scholar 

  27. Li XM (2016) Microstructure and properties of alumina ceramics prepared from submicrometer alumina powder with MgO–ZrO2 coated on alumina grain surface. J Alloys Compd 669:55–59

    Article  Google Scholar 

  28. Lin CK, Zhang CM, Lin J (2007) Phase transformation and photo-luminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol–gel process. J Phys Chem C 111:3300–3307

    Article  Google Scholar 

  29. Young KM, Kyriakidou EA, Soon CJ (2016) Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports. Appl Catal B 187:181–194

    Article  Google Scholar 

  30. Jeong C, Suh Y (2016) Role of ZrO2 in Cu/ZnO/ZrO2 catalysts prepared from the precipitated Cu/Zn/Zr precursors. Catal Today 265:254–263

    Article  Google Scholar 

  31. Jung-Min O, Amar SK, Olt G, Stephen EC (2012) Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials. Langmuir 28:3259–3270

    Article  Google Scholar 

  32. Luo JM, Luo XB, Hu CZ, Crittenden JC (2016) Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl Mater Interfaces 8:18912–18921

    Article  Google Scholar 

  33. Sesha V, Fatma KS, Cagla OA, Necmi B (2015) Amorphous to tetragonal zirconia nanostructures and evolution of valence and core regions. J Phys Chem C 119:23268–23273

    Article  Google Scholar 

  34. Lin J, Huang Y, Zhang HA (2015) Crack-healing and pre-oxidation behavior of ZrO2 fiber toughened ZrB2-based ceramics. Int J Refract Met H 48:5–10

    Article  Google Scholar 

  35. Li CT, Lee C, Li S, Kuo H (2016) Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells. J Power Sources 302:155–163

    Article  Google Scholar 

  36. Iftikhar AS, Kyung CS, Alvira AA, Sung H (2016) Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell. J Power Sources 319:90–98

    Article  Google Scholar 

  37. Mukta T, Mandakini B, Shruti A, Satishchandra O (2014) Electronically and catalytically functional carbon cloth as a permeable and flexible counter electrode for dye sensitized solar cell. Electrochim Acta 123:248–253

    Article  Google Scholar 

  38. Prakash J, Zhang LF, Chen QL, Qiao QQ (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577

    Article  Google Scholar 

  39. Chen SL, Tao J, Tao HJ, Shen YZ, Wang T, Pan L (2016) High-performance and low-cost dye-sensitized solar cells based on kesterite Cu2ZnSnS4 nanoplate arrays on a flexible carbon cloth cathode. J Power Sources 330:28–36

    Article  Google Scholar 

  40. Duan YY, Tang QW, Li R, He BL, Yu LM (2015) An avenue of sealing liquid electrolyte in flexible dye-sensitized solar cells. J Power Sources 274:304–309

    Article  Google Scholar 

  41. Zhai T, Xie SL, Yu ML, Fang PP, Tong YX (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263

    Article  Google Scholar 

  42. Yue GT, Ma XP, Zhang WF, Li FM, Wu JH, Li GQ (2015) A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale Res Lett 10:1

    Article  Google Scholar 

  43. Minna T, Janne H, Kati M, Kerttu A (2009) Nanostructured dye solar cells on flexible substrates-Review. Int J Energy Res 33:1145–1160

    Article  Google Scholar 

Download references

Acknowledgement

The financial support of this work was provided by the Program for Zhejiang Provincial Natural Science Foundation of China (LZ16E020002), Innovative Research Team of Zhejiang Sci-Tech University (15010039-Y), and National Natural Science Foundation of China (51402260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Song or Jie Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Xie, X., Song, L. et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells. J Mater Sci 52, 11025–11035 (2017). https://doi.org/10.1007/s10853-017-1287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1287-z

Keywords

Navigation