Skip to main content
Log in

Influence of cellulose/[Bmim]Cl solution on the properties of fabricated NIPS PVDF membranes

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, composite membranes were prepared from mixed solution of polyvinylidene fluoride (PVDF) and cellulose via the non-solvent-induced phase separation (NIPS) method. N, N-dimethylacetamide (DMAc) and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) were used as the solvent for PVDF and cellulose, respectively. SEM and in situ scanning techniques were used to investigate the morphology of the prepared membranes. The results showed that viscose cellulose/[Bmim]Cl solution acted as a porogenic agent during the membrane preparation process. Hydrophilicity of the composites was evaluated by water contact angle, moisture regain and equilibrium water uptake, which demonstrated that the wettability of the membranes was associated with the hydrophilic group and the roughness of the surface. Most importantly, the α → β transformation in PVDF matrix was demonstrated from the results of WAXD, FT-IR and DSC. The quantitative analysis indicated that the β-phase content in PVDF reached 90.1% when cellulose content was 5%, which is higher than many published references and was ascribed to the cooperation of cellulose and ionic liquid. Besides, the crystallinity, thermal stability and mechanical properties of the composite membranes were studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ichwan M, Son TW (2012) Preparation and characterization of dense cellulose film for membrane application. J Appl Polym Sci 124:1409–1418

    Article  Google Scholar 

  2. Jawad ZA, Ahmad AL, Low SC et al (2015) Influence of solvent exchange time on mixed matrix membrane separation performance for CO2/N2 and a kinetic sorption study. J Membr Sci 476:590–601

    Article  Google Scholar 

  3. Xu D, Hein S, Wang K (2008) Chitosan membrane in separation applications. Mater Sci Tech-Lond 24:1076–1087

    Article  Google Scholar 

  4. Liu D, Wang T, He C (2016) Antifouling polyethersulfone membrane blended with a dual-mode amphiphilic copolymer. J Mater Sci 51:7383–7394. doi:10.1007/s10853-016-9904-9

    Article  Google Scholar 

  5. Liu F, Hashim NA, Liu Y et al (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27

    Article  Google Scholar 

  6. Shen J, Zhang Q, Yin Q et al (2017) Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J Membr Sci 521:95–103

    Article  Google Scholar 

  7. Qin A, Li X, Zhao X et al (2015) Preparation and characterization of nano-chitin whisker reinforced PVDF membrane with excellent antifouling property. J Membr Sci 480:1–10

    Article  Google Scholar 

  8. Zhang S, Wu L, Deng F et al (2016) Hydrophilic modification of PVDF porous membrane via a simple dip-coating method in plant tannin solution. RSC Adv 6:71287–71294

    Article  Google Scholar 

  9. Zhang Z, Wu Q, Song K et al (2015) Using cellulose nanocrystals as a sustainable additive to enhance hydrophilicity, mechanical and thermal properties of poly(vinylidene fluoride)/poly(methyl methacrylate) blend. ACS Sustain Chem Eng 3:574–582

    Article  Google Scholar 

  10. Tu K, Shen P, Li J et al (2015) Preparation of enduringly antifouling PVDF membrane with compatible zwitterionic copolymer via thermally induced phase separation. J Appl Polym Sci 132:1–6

    Article  Google Scholar 

  11. Zhu J, Liu D, He C (2016) Enhanced antifouling ability of a poly (vinylidene fluoride) membrane functionalized with a zwitterionic serine-based layer. RSC Adv 6:85612–85620

    Article  Google Scholar 

  12. Mahdavi H, Sheikh-Hasani F, Mahmoudian M (2016) HBPE-g-PVDF/PVDF blend nanofiltration membrane: preparation and characterization. J Iran Chem Soc 13:1733–1740

    Article  Google Scholar 

  13. Pan Y, Yu Z, Shi H et al (2016) A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites. J Chem Technol Biotechnol 92:562–572

    Article  Google Scholar 

  14. Shen X, Yin X, Zhao Y et al (2015) Antifouling enhancement of PVDF membrane tethered with polyampholyte hydrogel layers. Polym Eng Sci 55:1367–1373

    Article  Google Scholar 

  15. Sui Y, Wang Z, Gao X et al (2012) Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J Membr Sci 413–414:38–47

    Article  Google Scholar 

  16. Lü X, Wang X, Guo L et al (2016) Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance. J Membr Sci 520:933–940

    Article  Google Scholar 

  17. Hossein Razzaghi M, Safekordi A, Tavakolmoghadam M et al (2014) Morphological and separation performance study of PVDF/CA blend membranes. J Membr Sci 470:547–557

    Article  Google Scholar 

  18. Duong PHH, Nunes SP, Chung TS (2016) Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven. J Membr Sci 520:840–849

    Article  Google Scholar 

  19. Li J, Liu X, Lu J et al (2016) Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. J Colloid Interface Sci 484:107–115

    Article  Google Scholar 

  20. Xu Z, Wu T, Shi J et al (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293

    Article  Google Scholar 

  21. Yang X, He Y, Zeng G et al (2016) Novel hydrophilic PVDF ultrafiltration membranes based on a ZrO2-multiwalled carbon nanotube hybrid for oil/water separation. J Mater Sci 51:8965–8976. doi:10.1007/s10853-016-0147-6

    Article  Google Scholar 

  22. Li N, Xiao C, An S et al (2010) Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination 250:530–537

    Article  Google Scholar 

  23. Sun Y, Rajabzadeh S, Ma W et al (2016) Preparation of PVDF/poly(tetrafluoroethylene-co-vinyl alcohol) blend membranes with antifouling propensities via nonsolvent induced phase separation method. J Appl Polym Sci 133:1–8

    Google Scholar 

  24. Zhang Z, Wu Q, Song K et al (2015) Poly(vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22:2431–2441

    Article  Google Scholar 

  25. Wu M, Huang HX, Tong J (2016) Enhancing β-phase content and tensile properties in poly (vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion. Mater Des 108:761–768

    Article  Google Scholar 

  26. Bodkhe S, Rajesh PSM, Kamle S et al (2014) Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J Polym Res 21:1–11

    Article  Google Scholar 

  27. Issa AA, Al-Maadeed M, Luyt AS et al (2016) Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J Appl Polym Sci 133:1–12

    Article  Google Scholar 

  28. Benz M, Euler WB (2003) Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using DSC and IR. J Appl Polym Sci 89:1093–1100

    Article  Google Scholar 

  29. Rajesh PSM, Bodkhe S, Kamle S et al (2014) Enhancing beta-phase in PVDF through physicochemical modification of cellulose. Electron Mater Lett 10:315–319

    Article  Google Scholar 

  30. Thakur P, Kool A, Bagchi B et al (2014) Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride) thin films. Appl Clay Sci 99:149–159

    Article  Google Scholar 

  31. Andrew JS, Clarke DR (2008) Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles. Langmuir 24:8435–8438

    Article  Google Scholar 

  32. Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22:699–704

    Article  Google Scholar 

  33. Hattori T, Hikosaka M, Ohigashi H (1996) The crystallization behaviour and phase diagram of extended-chain crystals of poly(vinylidene fluoride) under high pressure. Polymer 37:85–91

    Article  Google Scholar 

  34. Zheng J, He A, Li J et al (2007) Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28:2159–2162

    Article  Google Scholar 

  35. Zhao ZN, Yu SS (2014) Bacterial cellulose and silica hybrid reinforcements in poly-(vinylidene fluoride) composite membranes. BioResources 9:6924–6937

    Google Scholar 

  36. Kim SS, Kee CD (2014) Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method. Int J Precis Eng Manuf 15:315–321

    Article  Google Scholar 

  37. Mejri R, Dias JC, Lopes AC et al (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313

    Article  Google Scholar 

  38. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  Google Scholar 

  39. Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75:90–94

    Article  Google Scholar 

  40. Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  Google Scholar 

  41. Zhang X, Tian J, Ren Z et al (2016) High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly(arylene ether sulfone) multiblock copolymer/polysulfone substrate. J Membr Sci 520:529–539

    Article  Google Scholar 

  42. Dayarian S, Zamani A, Moheb A et al (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416

    Article  Google Scholar 

  43. Sheikh FA, Zargar MA, Tamboli AH et al (2016) A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: by in situ hydrothermal approach. Appl Surf Sci 385:417–425

    Article  Google Scholar 

  44. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  Google Scholar 

  45. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  46. Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279

    Article  Google Scholar 

  47. Song Y, Zhao Z, Yu W et al (2007) Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Sci China Chem 50:790–796

    Article  Google Scholar 

  48. De Silva R, Vongsanga K, Wang X et al (2015) Development of a novel regenerated cellulose composite material. Carbohydr Polym 121:382–387

    Article  Google Scholar 

  49. Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83:1253–1256

    Article  Google Scholar 

  50. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the Enterprise university-research prospective program Jiangsu Province (No. BY2016022-08) and the Fundamental research funds for the central universities (Nos. JUSRP51723B, JUSRP51505, JUSRP11502). Yang also appreciates USDA [National Agriculture and Food Initiative, Hatch Act, Multistate Research Project S-1054 (NEB37-037)] and Agricultural Research Division at the University of Nebraska-Lincoln for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bomou Ma or Yiqi Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Yang, J., Sun, Q. et al. Influence of cellulose/[Bmim]Cl solution on the properties of fabricated NIPS PVDF membranes. J Mater Sci 52, 9946–9957 (2017). https://doi.org/10.1007/s10853-017-1150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1150-2

Keywords

Navigation