Skip to main content
Log in

High-performance fiber-reinforced concrete: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, an emerging technology termed, “High-Performance Fiber-Reinforced Concrete (HPFRC)” has become popular in the construction industry. The materials used in HPFRC depend on the desired characteristics and the availability of suitable local economic alternative materials. Concrete is a common building material, generally weak in tension, often ridden with cracks due to plastic and drying shrinkage. The introduction of short discrete fibers into the concrete can be used to counteract and prevent the propagation of cracks. Despite an increase in interest to use HPFRC in concrete structures, some doubts still remain regarding the effect of fibers on the properties of concrete. This paper presents the most comprehensive review to date on the mechanical, physical, and durability-related features of concrete. Specifically, this literature review aims to provide a comprehensive review of the mechanism of crack formation and propagation, compressive strength, modulus of elasticity, stress–strain behavior, tensile strength (TS), flexural strength, drying shrinkage, creep, electrical resistance, and chloride migration resistance of HPFRC. In general, the addition of fibers in high-performance concrete has been proven to improve the mechanical properties of concrete, particularly the TS, flexural strength, and ductility performance. Furthermore, incorporation of fibers in concrete results in reductions in the shrinkage and creep deformations of concrete. However, it has been shown that fibers may also have negative effects on some properties of concrete, such as the workability, which get reduced with the addition of steel fibers. The addition of fibers, particularly steel fibers, due to their conductivity leads to a significant reduction in the electrical resistivity of the concrete, and it also results in some reduction in the chloride penetration resistance of the concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hassanpour M, Shafigh P, Mahmud HB (2012) Lightweight aggregate concrete fiber reinforcement—a review. Constr Build Mater 37:452–461

    Article  Google Scholar 

  2. Rashiddadash P, Ramezanianpour AA, Mahdikhani M (2014) Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Constr Build Mater 51:313–320

    Article  Google Scholar 

  3. Afroughsabet V, Ozbakkaloglu T (2015) Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr Build Mater 94:73–82

    Article  Google Scholar 

  4. Chung DDL (2001) Functional properties of cement-matrix composites. J Mater Sci 36(6):1315–1324. doi:10.1023/A:1017522616006

    Article  Google Scholar 

  5. Giaccio GM, Zerbino RL (2005) Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete. Mater Struct 38(3):335–342

    Article  Google Scholar 

  6. Nguyen HA, Chang TP, Shih JY, Chen CT, Nguyen TD (2016) Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder. Constr Build Mater 106:670–677

    Article  Google Scholar 

  7. Wang HY, Lin CC (2013) A study of fresh and engineering properties of self-compacting high slag concrete (SCHSC). Constr Build Mater 42:132–136

    Article  Google Scholar 

  8. Farnam Y, Mohammadi S, Shekarchi M (2010) Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite. Int J Impact Eng 37(2):220–229

    Article  Google Scholar 

  9. Xie T, Ozbakkaloglu T (2015) Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression. Eng Struct 90:158–171

    Article  Google Scholar 

  10. Wang Y, Zureick AH, Cho BS, Scott DE (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J Mater Sci 29(16):4191–4199. doi:10.1007/BF00414198

    Article  Google Scholar 

  11. Li VC, Maalej M, Hashida T (1994) Experimental determination of the stress-crack opening relation in fibre cementitious composites with a crack-tip singularity. J Mater Sci 29(10):2719–2724. doi:10.1007/BF00356823

    Article  Google Scholar 

  12. Luo X, Sun W, Chan SYN (2001) Steel fiber reinforced high-performance concrete: a study on the mechanical properties and resistance against impact. Mater Struct 34(3):144–149

    Article  Google Scholar 

  13. Biolzi L, Guerrini GL, Rosati G (1997) Overall structural behavior of high strength concrete specimens. Constr Build Mater 11(1):57–63

    Article  Google Scholar 

  14. Kou SC, Poon CS (2015) Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Constr Build Mater 77:501–508

    Article  Google Scholar 

  15. Vincent T, Ozbakkaloglu T (2015) Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: an experimental study on interface gap effect. Constr Build Mater 75:144–156

    Article  Google Scholar 

  16. Song PS, Hwang S (2004) Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater 18(9):669–673

    Article  Google Scholar 

  17. Lim JC, Ozbakkaloglu T (2014) Influence of silica fume on stress–strain behavior of FRP-confined HSC. Constr Build Mater 63:11–24

    Article  Google Scholar 

  18. Ozbakkaloglu T (2013) Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression. Compos B Eng 54:97–111

    Article  Google Scholar 

  19. Yazici H (2007) The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build Environ 42(5):2083–2089

    Article  Google Scholar 

  20. Shannag MJ (2000) High strength concrete containing natural pozzolan and silica fume. Cem Concr Compos 22(6):399–406

    Article  Google Scholar 

  21. Teng S, Lim TYD, Divsholi BS (2013) Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag. Constr Build Mater 40:875–881

    Article  Google Scholar 

  22. Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V (2004) Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem Concr Res 34(7):1087–1092

    Article  Google Scholar 

  23. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos 26(4):347–357

    Article  Google Scholar 

  24. Ramezanianpour AA, Malhotra VM (1995) Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem Concr Compos 17(2):125–133

    Article  Google Scholar 

  25. Brooks JJ, Johari MM, Mazloom M (2000) Effect of admixtures on the setting times of high-strength concrete. Cem Concr Compos 22(4):293–301

    Article  Google Scholar 

  26. Güneyisi E, Gesoğlu M, Akoi AOM, Mermerdaş K (2014) Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Compos B Eng 56:83–91

    Article  Google Scholar 

  27. Hassan KE, Cabrera JG, Maliehe RS (2000) The effect of mineral admixtures on the properties of high-performance concrete. Cem Concr Compos 22(4):267–271

    Article  Google Scholar 

  28. Toutanji H, Delatte N, Aggoun S, Duval R, Danson A (2004) Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cem Concr Res 34(2):311–319

    Article  Google Scholar 

  29. Kaid N, Cyr M, Julien S, Khelafi H (2009) Durability of concrete containing a natural pozzolan as defined by a performance-based approach. Constr Build Mater 23(12):3457–3467

    Article  Google Scholar 

  30. Shannag MJ, Yeginobali A (1995) Properties of pastes, mortars and concretes containing natural pozzolan. Cem Concr Res 25(3):647–657

    Article  Google Scholar 

  31. Vejmelková E, Pavlíková M, Keršner Z, Rovnaníková P, Ondráček M, Sedlmajer M, Černý R (2009) High performance concrete containing lower slag amount: a complex view of mechanical and durability properties. Constr Build Mater 23(6):2237–2245

    Article  Google Scholar 

  32. Chen B, Liu J (2008) Experimental application of mineral admixtures in lightweight concrete with high strength and workability. Constr Build Mater 22(6):1108–1113

    Article  Google Scholar 

  33. Zain MFM, Safiuddin MD, Mahmud H (2000) Development of high performance concrete using silica fume at relatively high water–binder ratios. Cem Concr Res 30(9):1501–1505

    Article  Google Scholar 

  34. Nili M, Afroughsabet V (2010) Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int J Impact Eng 37(8):879–886

    Article  Google Scholar 

  35. Nili M, Afroughsabet V (2012) The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Mater Sci Eng A 531:107–111

    Article  Google Scholar 

  36. Sivakumar A, Santhanam M (2007) A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem Concr Compos 29(7):575–581

    Article  Google Scholar 

  37. Toutanji HA (1999) Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr Build Mater 13(4):171–177

    Article  Google Scholar 

  38. Wang Y, Backer S, Li VC (1987) An experimental study of synthetic fibre reinforced cementitious composites. J Mater Sci 22(12):4281–4291. doi:10.1007/BF01132019

    Article  Google Scholar 

  39. Hubert M, Desmettre C, Charron JP (2015) Influence of fiber content and reinforcement ratio on the water permeability of reinforced concrete. Mater Struct 48(9):2795–2807

    Article  Google Scholar 

  40. Kuder KG, Shah SP (2010) Processing of high-performance fiber-reinforced cement-based composites. Constr Build Mater 24(2):181–186

    Article  Google Scholar 

  41. Lau A, Anson M (2006) Effect of high temperatures on high performance steel fibre reinforced concrete. Cem Concr Res 36(9):1698–1707

    Article  Google Scholar 

  42. Balaguru PN, Shah SP (1992) Fiber-reinforced cement composites. McGraw-Hill, New York

    Google Scholar 

  43. Wang Y, Li VC, Backer S (1991) Tensile failure mechanisms in synthetic fibre-reinforced mortar. J Mater Sci 26(24):6565–6575. doi:10.1007/BF00553679

    Article  Google Scholar 

  44. Savastano HJ, Turner A, Mercer C, Soboyejo WO (2006) Mechanical behavior of cement-based materials reinforced with sisal fibers. J Mater Sci 41(21):6938–6948. doi:10.1007/s10853-006-0218-1

    Article  Google Scholar 

  45. Sudin R, Swamy N (2006) Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J Mater Sci 41(21):6917–6924. doi:10.1007/s10853-006-0224-3

    Article  Google Scholar 

  46. Khayat KH, Roussel Y (2000) Testing and performance of fiber-reinforced, self-consolidating concrete. Mater Struct 33(6):391–397

    Article  Google Scholar 

  47. Andreu G, Miren E (2014) Experimental analysis of properties of high performance recycled aggregate concrete. Constr Build Mater 52:227–235

    Article  Google Scholar 

  48. Sabet FA, Libre NA, Shekarchi M (2013) Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr Build Mater 44:175–184

    Article  Google Scholar 

  49. Naaman AE, Homrich JR (1989) Tensile stress–strain properties of SIFCON. ACI Mater J 86(3):244–251

    Google Scholar 

  50. Walraven JC (2009) High performance fiber reinforced concrete: progress in knowledge and design codes. Mater Struct 42(9):1247–1260

    Article  Google Scholar 

  51. Bandelt MJ, Billington SL (2016) Bond behavior of steel reinforcement in high-performance fiber-reinforced cementitious composite flexural members. Mater Struct 49(1–2):71–86

    Article  Google Scholar 

  52. Aydın S, Baradan B (2013) The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos B Eng 45(1):63–69

    Article  Google Scholar 

  53. Cattaneo S, Biolzi L (2009) Assessment of thermal damage in hybrid fiber-reinforced concrete. J Mater Civ Eng 22(9):836–845

    Article  Google Scholar 

  54. Eren Ö, Marar K (2009) Effects of limestone crusher dust and steel fibers on concrete. Constr Build Mater 23(2):981–988

    Article  Google Scholar 

  55. Yazıcı Ş, İnan G, Tabak V (2007) Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr Build Mater 21(6):1250–1253

    Article  Google Scholar 

  56. Mohammadi Y, Singh SP, Kaushik SK (2008) Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Constr Build Mater 22(5):956–965

    Article  Google Scholar 

  57. Aruntaş HY, Cemalgil S, Şimşek O, Durmuş G, Erdal M (2008) Effects of super plasticizer and curing conditions on properties of concrete with and without fiber. Mater Lett 62(19):3441–3443

    Article  Google Scholar 

  58. Atiş CD, Karahan O (2009) Properties of steel fiber reinforced fly ash concrete. Constr Build Mater 23(1):392–399

    Article  Google Scholar 

  59. Wang ZL, Liu YS, Shen RF (2008) Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression. Constr Build Mater 22(5):811–819

    Article  Google Scholar 

  60. Muciaccia G, Biolzi L (2012) Thermal degradation of fiber reinforced extruded materials. Fire Saf J 49:89–99

    Article  Google Scholar 

  61. Bindiganavile V, Banthia N (2001) Polymer and steel fiber-reinforced cementitious composites under impact loading? part 1: bond-slip response. ACI Mater J 98(1):10–16

    Google Scholar 

  62. Poon CS, Shui ZH, Lam L (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem Concr Res 34(12):2215–2222

    Article  Google Scholar 

  63. Soltanzadeh F, Barros JAO, Santos RFC (2015) High performance fiber reinforced concrete for the shear reinforcement: experimental and numerical research. Constr Build Mater 77:94–109

    Article  Google Scholar 

  64. Zhang XX, Elazim AA, Ruiz G, Yu RC (2014) Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates. Int J Impact Eng 71:89–96

    Article  Google Scholar 

  65. Arisoy B, Wu HC (2008) Material characteristics of high performance lightweight concrete reinforced with PVA. Constr Build Mater 22(4):635–645

    Article  Google Scholar 

  66. Dvorkin L, Dvorkin O (2006) Basics of concrete science, Chapter 7. Stori-Beton, St-Petersburg, pp 135–144

    Google Scholar 

  67. Mehta PK, Monteiro PJ (2014) Concrete: microstructure, properties, and materials, 4th edn. McGraw-Hill, New York

    Google Scholar 

  68. Biolzi L, Cattaneo S, Guerrini GL (2000) Fracture of plain and fiber-reinforced high strength mortar slabs with EA and ESPI monitoring. Appl Compos Mater 7(1):1–12

    Article  Google Scholar 

  69. Barros JA, Sena-Cruz J (2001) Fracture energy of steel fibre reinforced concrete. Mech Compos Mater Struct 8(1):29–45

    Article  Google Scholar 

  70. Sivakumar A, Santhanam M (2007) Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem Concr Compos 29(8):603–608

    Article  Google Scholar 

  71. Yurtseven AE (2004) Determination of mechanical properties of hybrid fiber einforced concrete. Master of Science Degree Thesis, Middle East Technical University

  72. Ahmed SFU, Maalej M, Paramasivam P (2007) Flexural responses of hybrid steel–polyethylene fiber reinforced cement composites containing high volume fly ash. Constr Build Mater 21(5):1088–1097

    Article  Google Scholar 

  73. Geng Y, Leung CK (1996) A microstructural study of fibre/mortar interfaces during fibre debonding and pull-out. J Mater Sci 31(5):1285–1294. doi:10.1007/BF00353108

    Article  Google Scholar 

  74. Brandt AM (1985) On the optimal direction of short metal fibres in brittle matrix composites. J Mater Sci 20(11):3831–3841. doi:10.1007/BF00552371

    Article  Google Scholar 

  75. Zheng Z, Feldman D (1995) Synthetic fiber-reinforced concrete. Program Polymer Sci 20(2):185–210

    Article  Google Scholar 

  76. Abtahi SM, Sheikhzadeh M, Hejazi SM (2010) Fiber-reinforced asphalt-concrete-a review. Constr Build Mater 24(6):871–877

    Article  Google Scholar 

  77. Shah AA, Ribakov Y (2011) Recent trends in steel fibered high-strength concrete. Mater Des 32(8):4122–4151

    Article  Google Scholar 

  78. Mechtcherine V (2012) Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites. Constr Build Mater 31:94–104

    Article  Google Scholar 

  79. Ardanuy M, Claramunt J, Toledo Filho RD (2015) Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater 79:115–128

    Article  Google Scholar 

  80. Silfwerbrand J (2008) Codes for SFRC Structures—A Swedish proposal. In: Walraven JC and Stoelhorst D (ed) fib Symposium: Tailor made Concrete Structures, Amsterdam, Netherland, pp 553–558.

  81. DAfStb (2015) Commentary on the DAfStb Guideline Steel Fibre Reinforced Concrete. 1. Edition

  82. CNR-DT 204 (2006) Guidelines for design, construction and production control of fiber reinforced concrete structures. National Research Council of Italy, Italy

  83. Vandewalle L, Nemegeer D, Balazs L, Barr B, Barros J, Bartos P, Banthia N, Criswell M, Denarie E, Di Prisco M, Falkner H (2003) RILEM TC162-TDF: test and design methods for steel fibre reinforced concrete: sigma-epsilon design method (final recommendation). Mater Struct 36(262):560–567

    Article  Google Scholar 

  84. Kwak HG, Filippou FC (1990) Finite element analysis of reinforced concrete structures under monotonic loads. Berkeley, CA: Department of Civil Engineering, University of California, pp 33–39

    Google Scholar 

  85. Hearing BP (1997) Fracture behavior of mortar-aggregate interfaces in concrete. Doctoral dissertation, Massachusetts Institute of Technology

  86. Sicat E, Gong F, Ueda T, Zhang D (2014) Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles. Constr Build Mater 65:122–131

    Article  Google Scholar 

  87. Nili M, Ehsani A (2015) Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater Des 75:174–183

    Article  Google Scholar 

  88. Hameed R, Turatsinze A, Duprat F, Sellier A (2010) A study on the reinforced fibrous concrete elements subjected to uniaxial tensile loading. KSCE J Civ Eng 14(4):547–556

    Article  Google Scholar 

  89. Kaufmann W (2013) Strength and deformations of structural concrete subjected to in-plane shear and normal forces. Birkhäuser, Basel

    Google Scholar 

  90. Shah SP (1992) Do fibers increase the tensile strength of cement-based matrix? ACI Mater J 88(6):595–602

    Google Scholar 

  91. Paipetis A, Galiotis C, Liu YC, Nairn JA (1999) Stress transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J Compos Mater 33(4):377–399

    Article  Google Scholar 

  92. Mindess S (1995) Fiber reinforced concrete: Challenges and prospects. In: Banthia N and Mindess S (eds) Second University-Industry Workshop on Fiber Reinforced Concrete and other Advanced Composites, Toronto, Canada

  93. Li VC, Maalej M (1996) Toughening in cement based composites. Part II: fiber reinforced cementitious composites. Cem Concr Compos 18(4):239–249

    Article  Google Scholar 

  94. Døssland ÅL (2008) Fibre reinforcement in load carrying concrete structures. Norwegian University of Science and Technology, Printed by NTNU Trykk.

  95. Ding Y, Kusterle W (2000) Compressive stress–strain relationship of steel fibre-reinforced concrete at early age. Cem Concr Res 30(10):1573–1579

    Article  Google Scholar 

  96. Mo KH, Yap KKQ, Alengaram UJ, Jumaat MZ (2014) The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Constr Build Mater 55:20–28

    Article  Google Scholar 

  97. Narwal J, Goel A, Sharma D, Kapoor DR, Singh B (2013) An experimental investigation on structural performance of steel fibre reinforced concrete beam. Int J Eng Adv Technol 2(6):301–304

    Google Scholar 

  98. Naaman AE (2003) Engineered steel fibers with optimal properties for reinforcement of cement composites. J Adv Concr Technol 1(3):241–252

    Article  Google Scholar 

  99. Yan H, Sun W, Chen H (1999) The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cem Concr Res 29(3):423–426

    Article  Google Scholar 

  100. ACI Committee 544 (2002) State-of-the-Art Report on Fiber Reinforced Concrete Reported by ACI Committee 544.

  101. Banthia N, Nandakumar N (2003) Crack growth resistance of hybrid fiber reinforced cement composites. Cem Concr Compos 25(1):3–9

    Article  Google Scholar 

  102. Löfgren I (2005) Fibre-reinforced Concrete for Industrial Construction-a fracture mechanics approach to material testing and structural analysis. PhD Thesis, Chelmers University of Technology

  103. Wuest J, Denarié E, Brühwiler E, Tamarit L, Kocher M, Gallucci E (2009) Tomography analysis of fiber distribution and orientation in ultra high-performance fiber-reinforced composites with high-fiber dosages. Exp Tech 33(5):50–55

    Article  Google Scholar 

  104. Stähli P, Custer R, van Mier JG (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41(1):189–196

    Article  Google Scholar 

  105. Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete. Springer series in geo-mechanics and geoengineering, 1st edn. Springer, Berlin

  106. Eik M, Lõhmus K, Tigasson M, Listak M, Puttonen J, Herrmann H (2013) DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J Mater Sci 48(10):3745–3759. doi:10.1007/s10853-013-7174-3

    Article  Google Scholar 

  107. Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111

    Article  Google Scholar 

  108. Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023

    Article  Google Scholar 

  109. Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre-reinforced concrete (sfrc) by X-ray tomography. J Mater Sci 48(3):1358–1367. doi:10.1007/s10853-012-6882-4

    Article  Google Scholar 

  110. Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420

    Article  Google Scholar 

  111. Kang ST, Lee BY, Kim JK, Kim YY (2011) The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Constr Build Mater 25(5):2450–2457

    Article  Google Scholar 

  112. Laranjeira de Oliveira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, University Politecnica de Catalunya

  113. Grünewald S (2012) Fibre reinforcement and the rheology of concrete. In: Roussel N (ed) Understanding the rheology of concrete. Woodhead Publishing Limited, Cambridge, pp 229–256

    Chapter  Google Scholar 

  114. Ferrara L, Ozyurt N, Di Prisco M (2011) High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation. Mater Struct 44(1):109–128

    Article  Google Scholar 

  115. Orbe A, Cuadrado J, Losada R, Rojí E (2012) Framework for the design and analysis of steel fiber reinforced self-compacting concrete structures. Constr Build Mater 35:676–686

    Article  Google Scholar 

  116. Wille K, Tue NV, Parra-Montesinos GJ (2014) Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. Mater Struct 47(11):1825–1838

    Article  Google Scholar 

  117. Ferrara L, Park YD, Shah SP (2008) Correlation among fresh state behavior, fiber dispersion, and toughness properties of SFRCs. J Mater Civ Eng 20(7):493–501

    Article  Google Scholar 

  118. Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27(3):391–398

    Article  Google Scholar 

  119. Gettu R, Gardner DR, Saldivar H, Barragán BE (2005) Study of the distribution and orientation of fibers in SFRC specimens. Mater Struct 38(1):31–37

    Article  Google Scholar 

  120. Soroushian P, Lee CD (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439

    Google Scholar 

  121. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. TU Delft, Delft University of Technology

  122. Lappa ES (2007) High strength fibre reinforced concrete: static and fatigue behaviour in bending. TU Delft, Delft University of Technology

  123. Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber dispersion in FRCS using AC-Impedance spectroscopy. Measuring monitoring and modeling concrete properties. Springer, Netherlands, pp 285–290

    Chapter  Google Scholar 

  124. Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36(9):1653–1660

    Article  Google Scholar 

  125. Torrents JM, Mason TO, Peled A, Shah SP, Garboczi EJ (2001) Analysis of the impedance spectra of short conductive fiber-reinforced composites. J Mater Sci 36(16):4003–4012. doi:10.1023/A:1017986608910

    Article  Google Scholar 

  126. Martinie L, Lataste JF, Roussel N (2015) Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations. Mater Struct 48(4):947–957

    Article  Google Scholar 

  127. Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int 41(8):638–647

    Article  Google Scholar 

  128. Vicente MA, González DC, Mínguez J (2014) Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct Test Eval 29(2):164–182

    Article  Google Scholar 

  129. Ponikiewski T, Katzer J, Bugdol M, Rudzki M (2015) Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater Struct 48(12):3863–3874

    Article  Google Scholar 

  130. Herrmann H, Pastorelli E, Kallonen A, Suuronen JP (2016) Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J Mater Sci 51:3772–3783. doi:10.1007/s10853-015-9695-4

    Article  Google Scholar 

  131. Lin YZ (1999) Tragverhalten von Stahlfaserbeton, Deutscher Ausschuss für Stahlbeton. Heft 494, Berlin, Beuth Verlag GmbH

  132. Bonzel J, Schmidt M (1984) Verteilung und Orientierung von Stahlfasern im Beton und ihr Einfluss auf die Eigenschaften von Stahlfaserbeton. Beton 34:463–470

    Google Scholar 

  133. Edgington J, Hannant DJ (1972) Steel fibre reinforced concrete. The effect on fibre orientation of compaction by vibration. Matériaux et Construction 5(1):41–44

    Article  Google Scholar 

  134. Kaïkea A, Achoura D, Duplan F, Rizzuti L (2014) Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete. Mater Des 63:493–499

    Article  Google Scholar 

  135. Khaliq W, Kodur V (2011) Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem Concr Res 41(11):1112–1122

    Article  Google Scholar 

  136. Zhu HB, Yan MZ, Wang PM, Li C, Cheng YJ (2015) Mechanical performance of concrete combined with a novel high strength organic fiber. Constr Build Mater 78:289–294

    Article  Google Scholar 

  137. Ding Y, Liu H, Pacheco-Torgal F, Jalali S (2011) Experimental investigation on the mechanical behaviour of the fiber reinforced high-performance concrete tunnel segment. Compos Struct 93(4):1284–1289

    Article  Google Scholar 

  138. Eren Ö, Celik T (1997) Effect of silica fume and steel fibers on some properties of high-strength concrete. Constr Build Mater 11(7):373–382

    Article  Google Scholar 

  139. Köksal F, Altun F, Yiğit İ, Şahin Y (2008) Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr Build Mater 22(8):1874–1880

    Article  Google Scholar 

  140. Chen WF, Carson JL (1971) Stress–strain properties of random wire reinforced concrete. ACI J Proc 68(12):933–936

    Google Scholar 

  141. Qian CX, Stroeven P (2000) Development of hybrid polypropylene-steel fibre-reinforced concrete. Cem Concr Res 30(1):63–69

    Article  Google Scholar 

  142. Komloš K, Babal B, Nürnbergerova T (1995) Hybrid fibre-reinforced concrete under repeated loading. Nucl Eng Des 156(1):195–200

    Article  Google Scholar 

  143. Qian C, Stroeven P (2000) Fracture properties of concrete reinforced with steel–polypropylene hybrid fibres. Cem Concr Compos 22(5):343–351

    Article  Google Scholar 

  144. Glavind M, Aarre T (1990) High-strength concrete with increased fracture-toughness. MRS Proc 211:39

    Article  Google Scholar 

  145. Nam-Wook KIM, Saeki N, Horiguchi T (2000) Crack and strength properties of hybrid fiber reinforced at early ages. Trans Japan Concr Inst 21:241–246

    Google Scholar 

  146. Bencardino F, Rizzuti L, Spadea G, Swamy RN (2008) Stress–strain behavior of steel fiber-reinforced concrete in compression. J Mater Civ Eng 20(3):255–263

    Article  Google Scholar 

  147. Khitab A, Arshad MT, Hussain N, Tariq K, Ali SA, Kazmi SMS, Munir MJ (2013) Concrete reinforced with 0.1 vol% of different synthetic fibers. Life Sci J 10(12):934–939

    Google Scholar 

  148. Hossain KMA, Lachemi M, Sammour M, Sonebi M (2013) Strength and fracture energy characteristics of self-consolidating concrete incorporating polyvinyl alcohol, steel and hybrid fibres. Constr Build Mater 45:20–29

    Article  Google Scholar 

  149. Huang C, Zhao G (1995) Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cem Concr Compos 17(3):199–206

    Article  Google Scholar 

  150. Chung DD (2005) Dispersion of short fibers in cement. J Mater Civ Eng 17(4):379–383

    Article  Google Scholar 

  151. Li VC, Kong HJ, Bike SG (2000) Fiber reinforced high performance concrete material. High Perform Concr Work Strength Durab 71–86

  152. Khayat KH, Kassimi F, Ghoddousi P (2014) Mixture design and testing of fiber-reinforced self-consolidating concrete. ACI Mater J 111(2):143–152

    Google Scholar 

  153. Noushini A, Samali B, Vessalas K (2013) Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr Build Mater 49:374–383

    Article  Google Scholar 

  154. Skoulikari M (2007) Experimental study of fiber glass reinforced mortar by variable volume percentage of fibers with marble aggregates. Kingston University

  155. Li VC (2002) Large volume, high-performance applications of fibers in civil engineering. J Appl Polymer Sci 83(3):660–686

    Article  Google Scholar 

  156. Edgington J (1973) Steel fibre reinforced concrete volume B. Doctoral dissertation, University of Surrey

  157. Shallal MA, Al-Owaisy SR (2007) Strength and elasticity of steel fiber reinforced concrete at high temperatures. J Eng Dev 11(2):125–133

    Google Scholar 

  158. AL-Ameeri AS (2013) The effect of steel fiber on some mechanical properties of self compacting concrete. Am J Civ Eng (AJCE) 1(3):102–110

    Article  Google Scholar 

  159. Ibrahim IS, Bakar MC (2011) Effects on mechanical properties of industrialised steel fibres addition to normal weight concrete. Proc Eng 14:2616–2626

    Article  Google Scholar 

  160. Noumowe A (2005) Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 C. Cem Concr Res 35(11):2192–2198

    Article  Google Scholar 

  161. Salih SA, Rejeb SK, Najim KB (2005) Improving the modulus of elasticity of high performance concrete by using steel fibers. Anbar J Eng Sci 205–216

  162. Ozger OB, Girardi F, Giannuzzi GM, Salomoni VA, Majorana CE, Fambri L, Baldassino N, Di Maggio R (2013) Effect of nylon fibres on mechanical and thermal properties of hardened concrete for energy storage systems. Mater Des 51:989–997

    Article  Google Scholar 

  163. Tassew ST, Lubell AS (2014) Mechanical properties of glass fiber reinforced ceramic concrete. Constr Build Mater 51:215–224

    Article  Google Scholar 

  164. Wang S, Zhang MH, Quek ST (2012) Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading. Constr Build Mater 31:1–11

    Article  Google Scholar 

  165. Giner VT, Baeza FJ, Ivorra S, Zornoza E, Galao Ó (2012) Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater Des 34:332–339

    Article  Google Scholar 

  166. Beigi MH, Berenjian J, Omran OL, Nik AS, Nikbin IM (2013) An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater Des 50:1019–1029

    Article  Google Scholar 

  167. Gul M, Bashir A, Naqash JA (2014) Study of modulus of elasticity of steel fiber reinforced concrete. Int J Eng Adv Technol (IJEAT) 3(4):304–309

    Google Scholar 

  168. Suhaendi SL, Horiguchi T (2006) Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition. Cem Concr Res 36(9):1672–1678

    Article  Google Scholar 

  169. Aulia TB (2002) Effects of polypropylene fibers on the properties of high-strength concretes. Institutes for Massivbau and Baustoffechnologi, University Leipzig, Lacer, p 7

    Google Scholar 

  170. Aslani F, Nejadi S (2013) Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression. Compos B Eng 53:121–133

    Article  Google Scholar 

  171. Dawood ET, Ramli M (2011) High strength characteristics of cement mortar reinforced with hybrid fibres. Constr Build Mater 25(5):2240–2247

    Article  Google Scholar 

  172. Mor A (1993) Steel-concrete bond in high-strength lightweight concrete. ACI Mater J 89(1):76–82

    Google Scholar 

  173. Kayali O, Haque MN, Zhu B (2003) Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cem Concr Compos 25(2):207–213

    Article  Google Scholar 

  174. Nataraja MC, Dhang N, Gupta AP (1999) Stress–strain curves for steel-fiber reinforced concrete under compression. Cem Concr Compos 21(5):383–390

    Article  Google Scholar 

  175. McCormac JC, Brown RH (2015) Design of reinforced concrete. John Wiley & Sons, New York

    Google Scholar 

  176. Neville AM (2005) Properties of concrete, 14th edn. Wiley, New York

    Google Scholar 

  177. Berra M, Ferrerra G (1990) Normal weight and total-lightweight high-strength concretes: a comparative study. ACI Spec Publ 121:701–734

    Google Scholar 

  178. Libre NA, Shekarchi M, Mahoutian M, Soroushian P (2011) Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr Build Mater 25(5):2458–2464

    Article  Google Scholar 

  179. Hsu LS, Hsu CT (1994) Stress–strain behavior of steel-fiber high-strength concrete under compression. ACI Struct J 91(4):448–457

    Google Scholar 

  180. Wafa FF, Ashour SA (1992) Mechanical properties of high-strength fiber reinforced concrete. ACI Mater J 89(5):449–455

    Google Scholar 

  181. Marar K, Eren Ö, Celik T (2001) Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater Lett 47(4):297–304

    Article  Google Scholar 

  182. Ünal O, Demir F, Uygunoğlu T (2007) Fuzzy logic approach to predict stress–strain curves of steel fiber-reinforced concretes in compression. Build Environ 42(10):3589–3595

    Article  Google Scholar 

  183. Ezeldin AS, Balaguru PN (1992) Normal-and high-strength fiber-reinforced concrete under compression. J Mater Civ Eng 4(4):415–429

    Article  Google Scholar 

  184. Panzera TH, Christoforo AL, Ribeiro Borges PH (2013) High performance fiber-reinforced concrete (FRC) for civil engineering applications. In: Bai J (ed) Advanced fiber-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing Limited, Cambridge, pp 552–581

    Chapter  Google Scholar 

  185. Lu X, Hsu CTT (2006) Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression. Cem Concr Res 36(9):1679–1685

    Article  Google Scholar 

  186. Taerwe LR (1993) Influence of steel fibers on strain-softening of high-strength concrete. ACI Mater J 89(1):54–60

    Google Scholar 

  187. Carneiro JA, Lima PRL, Leite MB, Toledo Filho RD (2014) Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem Concr Compos 46:65–72

    Article  Google Scholar 

  188. Zain MFM, Mahmud HB, Ilham A, Faizal M (2002) Prediction of splitting tensile strength of high-performance concrete. Cem Concr Res 32(8):1251–1258

    Article  Google Scholar 

  189. Li G (2004) The effect of moisture content on the tensile strength properties of concrete. Doctoral dissertation, University of Florida

  190. Li Z (2011) Advanced concrete technology. Wiley, Weinheim

    Book  Google Scholar 

  191. Dewar JD (1964) The indirect tensile strength of concrete of high compressive strength. Technical report No. 42.377, Cement and Concrete Association, Wexham Springs, England

  192. Venkatesan KR, Raghunath PN, Suguna K (2015) Flexural behavior of high strength steel fibre reinforced concrete beams. Int J Eng Sci Innov Technol (IJESIT) 4(1):135–140

    Google Scholar 

  193. Murali G, Santhi AS, Ganesh GM (2014) Impact resistance and strength reliability of fiber reinforced concrete using two parameter weibull distribution. ARPN J Eng Appl Sci 9(4):554–559

    Google Scholar 

  194. Mydin MAO (2013) Engineering performance of high strength concrete containing steel fibre reinforcement. Analele Universităţii "Eftimie Murgu", ISSN 1453–7397, pp 121–132

  195. Altun F, Haktanir T, Ari K (2007) Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr Build Mater 21(3):654–661

    Article  Google Scholar 

  196. Van Chanh N (2004) Steel fiber reinforced concrete. In: Faculty of Civil Engineering Ho chi minh City university of Technology. Seminar Material, pp 108–116

  197. Gül R, Okuyucu E, Türkmen İ, Aydin AC (2007) Thermo-mechanical properties of fiber reinforced raw perlite concrete. Mater Lett 61(29):5145–5149

    Article  Google Scholar 

  198. Gao J, Sun W, Morino K (1997) Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cem Concr Compos 19(4):307–313

    Article  Google Scholar 

  199. Yao W, Li J, Wu K (2003) Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem Concr Res 33(1):27–30

    Article  Google Scholar 

  200. Wang HT, Wang LC (2013) Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr Build Mater 38:1146–1151

    Article  Google Scholar 

  201. Balendran RV, Zhou FP, Nadeem A, Leung AYT (2002) Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build Environ 37(12):1361–1367

    Article  Google Scholar 

  202. Tsai CT, Li LS, Chang CC, Hwang CL (2009) Durability design and application of steel fiber reinforced concrete in Taiwan. Arab J Sci Eng 34(1B):57–59

    Google Scholar 

  203. Song PS, Hwang S, Sheu BC (2005) Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem Concr Res 35(8):1546–1550

    Article  Google Scholar 

  204. Padron I, Zollo RF (1990) Effect of synthetic fibers on volume stability and cracking of portland cement concrete and mortar. ACI Mater J 87(4):327–332

    Google Scholar 

  205. Xu G, Hannant DJ (1992) Flexural behaviour of combined polypropylene network and glass fibre reinforced cement. Cem Concr Compos 14(1):51–61

    Article  Google Scholar 

  206. Soroushian P, Bayasi Z (1991) Fiber type effects on the performance of steel fiber reinforced concrete. ACI Mater J 88(2):129–134

    Google Scholar 

  207. Bayasi Z, Zeng J (1993) Properties of polypropylene fiber reinforced concrete. ACI Mater J 90(6):605–610

    Google Scholar 

  208. ACI 544.3R-98 (1998) Guide for specifying, proportioning, mixing, placing, and finishing steel fiber reinforced concrete

  209. Sivakumar A (2011) Influence of hybrid fibres on the post crack performance of high strength concrete: part I experimental investigations. J Civ Eng Constr Technol 2(7):147–159

    Google Scholar 

  210. Oucief H, Habita MF, Redjel B (2006) Hybrid fiber reinforced self-compacting concrete: hardened properties. Int J Civ Eng 4(2):77–85

    Google Scholar 

  211. Pierre P, Pleau R, Pigeon M (1999) Mechanical properties of steel microfiber reinforced cement pastes and mortars. J Mater Civ Eng 11(4):317–324

    Article  Google Scholar 

  212. Chen B, Liu J (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem Concr Res 34(6):1065–1069

    Article  Google Scholar 

  213. Park SH, Kim DJ, Ryu GS, Koh KT (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem Concr Compos 34(2):172–184

    Article  Google Scholar 

  214. Yu R, Spiesz P, Brouwers HJH (2014) Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): experiments and modeling. Constr Build Mater 68:158–171

    Article  Google Scholar 

  215. Shihada S (2011) Mechanical properties of ultra high performance fiber reinforced concrete (UHPFRC). Islam Univ J 19(2):57–69

    Google Scholar 

  216. Kim DJ, Park SH, Ryu GS, Koh KT (2011) Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr Build Mater 25(11):4144–4155

    Article  Google Scholar 

  217. Yap SP, Bu CH, Alengaram UJ, Mo KH, Jumaat MZ (2014) Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Mater Des 57:652–659

    Article  Google Scholar 

  218. Xie JH, Guo YC, Liu LS, Xie ZH (2015) Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Constr Build Mater 79:263–272

    Article  Google Scholar 

  219. Gopalaratnam VS, Gettu R (1995) On the characterization of flexural toughness in fiber reinforced concretes. Cem Concr Compos 17(3):239–254

    Article  Google Scholar 

  220. Yi CK, Ostertag CP (2001) Strengthening and toughening mechanisms in microfiber reinforced cementitious composites. J Mater Sci 36(6):1513–1522. doi:10.1023/A:1017557015523

    Article  Google Scholar 

  221. Wang JY, Chia KS, Liew JYR, Zhang MH (2013) Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cem Concr Compos 43:39–47

    Article  Google Scholar 

  222. Balaguru P, Najm H (2004) High-performance fiber-reinforced concrete mixture proportions with high fiber volume fractions. ACI Mater J 101(4):281–286

    Google Scholar 

  223. Balaguru P, Narahari R, Patel M (1992) Flexural toughness of steel fiber reinforced concrete. ACI Mater J 89(6):541–546

    Google Scholar 

  224. Shao Y, Shah SP (1997) Mechanical properties of PVA fiber reinforced cement composites fabricated by extrusion processing. ACI Mater J 94(6):555–564

    Google Scholar 

  225. Ye Y, Hu S, Daio B, Yang S, Liu Z (2012) Mechanical behavior of ultra-high performance concrete reinforced with hybrid different shapes of steel fiber. In: Twelfth COTA International Conference of Transportation Professionals, pp 3017–3028

  226. Banthia N, Sappakittipakorn M (2007) Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem Concr Res 37(9):1366–1372

    Article  Google Scholar 

  227. Blunt JD, Ostertag CP (2009) Deflection hardening and workability of hybrid fiber composites. ACI Mater J 106(3):265–272

    Google Scholar 

  228. Kwon SH, Shah SP (2008) Prediction of early-age cracking of fiber-reinforced concrete due to restrained shrinkage. ACI Mater J 105(4):381–389

    Google Scholar 

  229. Wang K, Jansen DC, Shah SP, Karr AF (1997) Permeability study of cracked concrete. Cem Concr Res 27(3):381–393

    Article  Google Scholar 

  230. Gribniak V, Kaklauskas G, Kliukas R, Jakubovskis R (2013) Shrinkage effect on short-term deformation behavior of reinforced concrete—when it should not be neglected. Mater Des 51:1060–1070

    Article  Google Scholar 

  231. Cheung AK, Leung CK (2011) Shrinkage reduction of high strength fiber reinforced cementitious composites (HSFRCC) with various water-to-binder ratios. Cem Concr Compos 33(6):661–667

    Article  Google Scholar 

  232. Bentz DP, Geiker MR, Hansen KK (2001) Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars. Cem Concr Res 31(7):1075–1085

    Article  Google Scholar 

  233. Folliard KJ, Berke NS (1997) Properties of high-performance concrete containing shrinkage-reducing admixture. Cem Concr Res 27(9):1357–1364

    Article  Google Scholar 

  234. Nmai CK, Tomita R, Hondo F, Buffenbarger J (1998) Shrinkage reducing admixtures. Concr Int 20(4):31–37

    Google Scholar 

  235. Shah SP, Weiss WJ, Yang W (1998) Shrinkage cracking—can it be prevented? Concr Int 20(4):51–55

    Google Scholar 

  236. Shah SP, Krguller ME, Sarigaphuti M (1992) Effects of shrinkage-reducing admixtures on restrained shrinkage cracking of concrete. ACI Mater J 89(3):289–295

    Google Scholar 

  237. Meddah MS, Suzuki M, Sato R (2011) Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete. Constr Build Mater 25(1):239–250

    Article  Google Scholar 

  238. Chung DDL (2002) Review: improving cement-based materials by using silica fume. J Mater Sci 37(4):673–682

    Article  Google Scholar 

  239. Swamy RN, Stavrides H (1979) Influence of fiber reinforcement on restrained shrinkage and cracking. ACI J Proc 76(3):443–460

    Google Scholar 

  240. Paul BK, Polivka M, Mehta PK (1981) Properties of fiber reinforced shrinkage-compensating concrete. ACI J Proc 78(6):488–492

    Google Scholar 

  241. Swamy RN (1986) Steel fibre concrete for bridge deck and building floor applications. Struct Eng Part A 64:149–157

    Google Scholar 

  242. Kim B, Weiss WJ (2003) Using acoustic emission to quantify damage in restrained fiber-reinforced cement mortars. Cem Concr Res 33(2):207–214

    Article  Google Scholar 

  243. Grzybowski M, Shah SP (1990) Shrinkage cracking of fiber reinforced concrete. ACI Mater J 87(2):138–148

    Google Scholar 

  244. Sargaphuti M, Shah SP, Vinson KD (1993) Shrinkage cracking and durability characteristics of cellulose fiber reinforced concrete. ACI Mater J 90(4):309–318

    Google Scholar 

  245. Banthia N, Yan C (2000) Shrinkage cracking in polyolefin fiber-reinforced concrete. ACI Mater J 97(4):432–437

    Google Scholar 

  246. Banthia N, Azzabi M, Pigeon M (1995) Restrained shrinkage tests on fiber reinforced cementitious composites. ACI Spec Publ 155:137–151

    Google Scholar 

  247. Wang YD, Fan XC (2011) Experimental research on physical and mechanical properties of steel fiber high-strength concrete. Adv Mater Res 168:1061–1064

    Google Scholar 

  248. Jafarifar N, Pilakoutas K, Bennett T (2014) Moisture transport and drying shrinkage properties of steel–fibre-reinforced-concrete. Constr Build Mater 73:41–50

    Article  Google Scholar 

  249. Güneyisi E, Gesoğlu M, Mohamadameen A, Alzeebaree R, Algın Z, Mermerdaş K (2014) Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Constr Build Mater 54:91–98

    Article  Google Scholar 

  250. Zhang P, Li QF (2013) Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos B Eng 45(1):1587–1594

    Article  Google Scholar 

  251. Bywalski C, Kamiński M, Maszczak M (2015) Influence of steel fibres addition on mechanical and selected rheological properties of steel fibre high-strength reinforced concrete. Arch Civ Mech Eng 15(3):742–750

    Article  Google Scholar 

  252. Choi SY, Park JS, Jung WT (2011) A study on the shrinkage control of fiber reinforced concrete pavement. Proc Eng 14:2815–2822

    Article  Google Scholar 

  253. Sun W, Chen H, Luo X, Qian H (2001) The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res 31(4):595–601

    Article  Google Scholar 

  254. Mangat PS, Azari MM (1984) A theory for the free shrinkage of steel fibre reinforced cement matrices. J Mater Sci 19(7):2183–2194

    Article  Google Scholar 

  255. Chen PW, Chung DDL (1996) Low-drying-shrinkage concrete containing carbon fibers. Compos B Eng 27(3):269–274

    Article  Google Scholar 

  256. Kayali O, Haque MN, Zhu B (1999) Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cem Concr Res 29(11):1835–1840

    Article  Google Scholar 

  257. Passuello A, Moriconi G, Shah SP (2009) Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem Concr Compos 31(10):699–704

    Article  Google Scholar 

  258. Cao M, Zhang C, Lv H (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr Build Mater 57:45–52

    Article  Google Scholar 

  259. Kawashima S, Shah SP (2011) Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cem Concr Compos 33(2):201–208

    Article  Google Scholar 

  260. Hsie M, Tu C, Song PS (2008) Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater Sci Eng A 494(1):153–157

    Article  Google Scholar 

  261. Chen B, Liu J (2005) Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem Concr Res 35(5):913–917

    Article  Google Scholar 

  262. Cyr M, Ouyang C, Shah SP (2003) Design of hybrid-fiber reinforcement for shrinkage cracking by crack width predictions. Brittle Matrix Compos 7:243–252

    Google Scholar 

  263. Ranaivomanana N, Multon S, Turatsinze A (2013) Basic creep of concrete under compression, tension and bending. Constr Build Mater 38:173–180

    Article  Google Scholar 

  264. Buratti N, Mazzotti C, Savoia M (2010) Long-term behaviour of fiber-reinforced self-compacting concrete beams. In: Design, production and placement of self-consolidating concrete, pp 439–450.

  265. Rouse JM, Billington SL (2007) Creep and shrinkage of high-performance fiber-reinforced cementitious composites. ACI Mater J 104(2):129–136

    Google Scholar 

  266. ACI 209R-97 (1997) Prediction of creep, shrinkage, and temperature effects in concrete structures

  267. ACI 544.5R-10 (2010) Report on the physical properties and durability of fiber-reinforced concrete

  268. Rossi P, Tailhan JL, Le Maou F (2013) Comparison of concrete creep in tension and in compression: influence of concrete age at loading and drying conditions. Cem Concr Res 51:78–84

    Article  Google Scholar 

  269. Baidya N, Mendis P, Fragomeni S (2010) Evaluation of creep, shrinkage and modulus of elasticity models of high strength concrete. Incorporating sustainable practice in mechanics and structures of materials. CRC Press, Melbourne, pp 239–245

    Google Scholar 

  270. CEB-FIP (2000) Structural concrete: textbook on behaviour, design and performance: updated knowledge of the CEB/FIP Model Code 1990, International Federation Structural Concrete

  271. Garas VY, Kahn LF, Kurtis KE (2009) Short-term tensile creep and shrinkage of ultra-high performance concrete. Cem Concr Compos 31(3):147–152

    Article  Google Scholar 

  272. Garas VY, Kahn LF, Kurtis KE (2008) Preliminary investigation of the effect of steel fibers on the tensile creep and shrinkage of ultra-high performance concrete. In: Proceedings of the 8th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures, vol. 1, pp 741–744

  273. Tan KH, Paramasivam P, Tan KC (1994) Instantaneous and long-term deflections of steel fiber reinforced concrete beams. ACI Struct J 91(4):384–393

    Google Scholar 

  274. Bissonnette B, Pigeon M (1995) Tensile creep at early ages of ordinary, silica fume and fiber reinforced concretes. Cem Concr Res 25(5):1075–1085

    Article  Google Scholar 

  275. Bissonnette B, Pigeon M, Vaysburd AM (2007) Tensile creep of concrete: study of its sensitivity to basic parameters. ACI Mater J 104(4):360–368

    Google Scholar 

  276. Bernard ES (2004) Creep of cracked fibre reinforced shotcrete panels. Shotcrete more engineering developments. Taylor & Francis Group, London, pp 47–57

    Book  Google Scholar 

  277. Mangat PS, Azari MM (1986) Compression creep behaviour of steel fibre reinforced cement composites. Mater Struct 19(5):361–370

    Article  Google Scholar 

  278. García-Taengua E, Arango S, Martí-Vargas JR, Serna P (2014) Flexural creep of steel fiber reinforced concrete in the cracked state. Constr Build Mater 65:321–329

    Article  Google Scholar 

  279. Houde J, Prezeau A, Roux R (1987) Creep of concrete containing fibers and silica fume. ACI Spec Publ 105:101–118

    Google Scholar 

  280. Buil M, Acker P (1985) Creep of a silica fume concrete. Cem Concr Res 15(3):463–466

    Article  Google Scholar 

  281. Chern JC, Chang CY (1994) Effects of silica fume on creep and shrinkage of steel fiber reinforced concrete. ACI Spec Publ 149:561–574

    Google Scholar 

  282. Chen CT, Chang JJ, Yeih WC (2014) The effects of specimen parameters on the resistivity of concrete. Constr Build Mater 71:35–43

    Article  Google Scholar 

  283. Jalal M, Mansouri E, Sharifipour M, Pouladkhan AR (2012) Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater Des 34:389–400

    Article  Google Scholar 

  284. Aït-Mokhtar A, Belarbi R, Benboudjema F, Burlion N, Capra B, Carcasses M, Colliat JB, Cussigh F, Deby F, Jacquemot F, De Larrard T, Lataste JF, Le Bescop P, Pierre M, Poyet S, Rougeau P, Rougelot T, Sellier A, Séménadisse J, Torrenti JM, Trabelsi A, Turcry P, Yanez-Godoy H (2013) Experimental investigation of the variability of concrete durability properties. Cem Concr Res 45:21–36

    Article  Google Scholar 

  285. Sanish KB, Neithalath N, Santhanam M (2013) Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr Build Mater 49:288–297

    Article  Google Scholar 

  286. Polder RB (2001) Test methods for on site measurement of resistivity of concrete-a RILEM TC-154 technical recommendation. Constr Build Mater 15(2):125–131

    Article  Google Scholar 

  287. Basheer PAM, Gilleece PRV, Long AE, Mc Carter WJ (2002) Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cem Concr Compos 24(5):437–449

    Article  Google Scholar 

  288. Pacheco J, Šavija B, Schlangen E, Polder RB (2014) Assessment of cracks in reinforced concrete by means of electrical resistance and image analysis. Constr Build Mater 65:417–426

    Article  Google Scholar 

  289. Torres-Luque M, Bastidas-Arteaga E, Schoefs F, Sánchez-Silva M, Osma JF (2014) Non-destructive methods for measuring chloride ingress into concrete: state-of-the-art and future challenges. Constr Build Mater 68:68–81

    Article  Google Scholar 

  290. Ahmad S, Adekunle SK, Maslehuddin M, Azad AK (2014) Properties of self-consolidating concrete made utilizing alternative mineral fillers. Constr Build Mater 68:268–276

    Article  Google Scholar 

  291. Boulay C, Dal Pont S, Belin P (2009) Real-time evolution of electrical resistance in cracking concrete. Cem Concr Res 39(9):825–831

    Article  Google Scholar 

  292. ACI 222R-01 (2001) Protection of metals in concrete against corrosion

  293. Audenaert K (2006) Transportmechanismen in zelfverdichtend beton in relatie met carbonatatie en chloridepenetratie. Doctoraalstudie, Universiteit Gent, Gent.

  294. Polder R, Andrade C, Elsener B, Vennesland Ø, Gulikers J, Weidert R, Raupach M (2000) Test methods for on site measurement of resistivity of concrete. Mater Struct 33(10):603–611

    Article  Google Scholar 

  295. De Rooij MR, Polder RB, Van Oosten HH (2007) Validation of service life performance of in situ concrete by TEM and RCM measurements. Heron 52(4):1–14

    Google Scholar 

  296. Bertolini L, Elsener B, Pedeferri P, Redaelli E, Polder RB (2013) Corrosion of steel in concrete: prevention, diagnosis, repair. Wiley, New York

    Book  Google Scholar 

  297. Smith KM, Schokker AJ, Tikalsky PJ (2004) Performance of supplementary cementitious materials in concrete resistivity and corrosion monitoring evaluations. ACI Mater J 101(5):385–390

    Google Scholar 

  298. Baroghel-Bouny V, Kinomura K, Thiery M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33(8):832–847

    Article  Google Scholar 

  299. Ramezanianpour AA, Jovein HB (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479

    Article  Google Scholar 

  300. Nili M, Afroughsabet V (2012) Property assessment of steel–fibre reinforced concrete made with silica fume. Constr Build Mater 28(1):664–669

    Article  Google Scholar 

  301. Frazão C, Camões A, Barros J, Gonçalves D (2015) Durability of steel fiber reinforced self-compacting concrete. Constr Build Mater 80:155–166

    Article  Google Scholar 

  302. Kakooei S, Akil HM, Jamshidi M, Rouhi J (2012) The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr Build Mater 27(1):73–77

    Article  Google Scholar 

  303. Söylev TA, Özturan T (2014) Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr Build Mater 73:67–75

    Article  Google Scholar 

  304. Cao J, Wen S, Chung DDL (2001) Defect dynamics and damage of cement-based materials, studied by electrical resistance measurement. J Mater Sci 36(18):4351–4360

    Article  Google Scholar 

  305. Wen S, Chung DDL (2001) Effect of carbon fiber grade on the electrical behavior of carbon fiber reinforced cement. Carbon 39(3):369–373

    Article  Google Scholar 

  306. Baeza FJ, Galao O, Zornoza E, Garcés P (2013) Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater Des 51:1085–1094

    Article  Google Scholar 

  307. Chiarello M, Zinno R (2005) Electrical conductivity of self-monitoring CFRC. Cem Concr Compos 27(4):463–469

    Article  Google Scholar 

  308. Wang X, Wang Y, Jin Z (2002) Electrical conductivity characterization and variation of carbon fiber reinforced cement composite. J Mater Sci 37(1):223–227. doi:10.1023/A:1013107623281

    Article  Google Scholar 

  309. Fu X, Lu W, Chung DDL (1998) Ozone treatment of carbon fiber for reinforcing cement. Carbon 36(9):1337–1345

    Article  Google Scholar 

  310. Fu X, Lu W, Chung DDL (1998) Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers. Cem Concr Res 28(2):183–187

    Article  Google Scholar 

  311. Chung DD (1998) Self-monitoring structural materials. Mater Sci Eng R: Rep 22(2):57–78

    Article  Google Scholar 

  312. Shi X, Xie N, Fortune K, Gong J (2012) Durability of steel reinforced concrete in chloride environments: an overview. Constr Build Mater 30:125–138

    Article  Google Scholar 

  313. Banthia N, Zanotti C, Sappakittipakorn M (2014) Sustainable fiber reinforced concrete for repair applications. Constr Build Mater 67:405–412

    Article  Google Scholar 

  314. Ghafoori N, Najimi M, Sobhani J, Aqel MA (2013) Predicting rapid chloride permeability of self-consolidating concrete: a comparative study on statistical and neural network models. Constr Build Mater 44:381–390

    Article  Google Scholar 

  315. Zhang MH, Li H (2011) Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr Build Mater 25(2):608–616

    Article  Google Scholar 

  316. Živica V (1997) Relationship between pore structure and permeability of hardened cement mortars: on the choice of effective pore structure parameter. Cem Concr Res 27(8):1225–1235

    Article  Google Scholar 

  317. Tanaka K, Kurumisawa K (2002) Development of technique for observing pores in hardened cement paste. Cem Concr Res 32(9):1435–1441

    Article  Google Scholar 

  318. Chao S, Lin W (2013) Effects of silica fume and steel fiber on chloride ion penetration and corrosion behavior of cement-based composites. J Wuhan Univ Technol Mater Sci Ed 28:279–284

    Article  Google Scholar 

  319. Gagné R, Aïtcin PC, Lamoth P (1993) Chloride-ion permeability of different concretes. Proceedings of the Sixth International Conference on Durability of Building Materials Components. Omiya, Japan, pp 1171–1180

    Google Scholar 

  320. Aıtcin PC (2003) The durability characteristics of high performance concrete: a review. Cem Concr Compos 25(4):409–420

    Article  Google Scholar 

  321. ASTM C1202-05 (2005) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration

  322. Nilsson L, Ngo MH, Gjørv OE (1998) High-performance repair materials for concrete structures in the port of Gothenburg. In: Second international conference on concrete under severe conditions: environment and loading, vol. 2, pp 1193–1198.

  323. Gruber KA, Ramlochan T, Boddy A, Hooton RD, Thomas MDA (2001) Increasing concrete durability with high-reactivity metakaolin. Cem Concr Compos 23(6):479–484

    Article  Google Scholar 

  324. Choi YS, Kim JG, Lee KM (2006) Corrosion behavior of steel bar embedded in fly ash concrete. Corros Sci 48(7):1733–1745

    Article  Google Scholar 

  325. Lu X, Li C, Zhang H (2002) Relationship between the free and total chloride diffusivity in concrete. Cem Concr Res 32(2):323–326

    Article  Google Scholar 

  326. Thomas MD, Bamforth PB (1999) Modelling chloride diffusion in concrete: effect of fly ash and slag. Cem Concr Res 29(4):487–495

    Article  Google Scholar 

  327. Manera M, Vennesland Ø, Bertolini L (2008) Chloride threshold for rebar corrosion in concrete with addition of silica fume. Corros Sci 50(2):554–560

    Article  Google Scholar 

  328. Yang CC, Cho SW (2003) An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials. Mater Chem Phys 81(1):116–125

    Article  Google Scholar 

  329. Shekarchi M, Rafiee A, Layssi H (2009) Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cem Concr Compos 31(10):769–775

    Article  Google Scholar 

  330. Uysal M, Yilmaz K, Ipek M (2012) The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete. Constr Build Mater 27(1):263–270

    Article  Google Scholar 

  331. Deboodt T, Fu T, Ideker JH (2015) Durability assessment of high-performance concrete with SRAs and FLWAs. Cem Concr Compos 57:94–101

    Article  Google Scholar 

  332. Şahmaran M (2007) Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar. J Mater Sci 42(22):9131–9136. doi:10.1007/s10853-007-1932-z

    Article  Google Scholar 

  333. Van Niejenhuis CB, Walbridge S, Hansson CM (2016) The performance of austenitic and duplex stainless steels in cracked concrete exposed to concentrated chloride brine. J Mater Sci 51(1):362–374. doi:10.1007/s10853-015-9387-0

    Article  Google Scholar 

  334. Boughanem S, Jesson DA, Mulheron MJ, Smith PA, Eddie C, Psomas S, Rimes M (2015) Tensile characterisation of thick sections of Engineered Cement Composite (ECC) materials. J Mater Sci 50(2):882–897. doi:10.1007/s10853-014-8649-6

    Article  Google Scholar 

  335. Rokugo K, Kanda T, Yokota H, Sakata N (2009) Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan. Mater Struct 42(9):1197–1208

    Article  Google Scholar 

  336. Di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42(9):1261–1281

    Article  Google Scholar 

  337. ACI Committee 224R (2001) Control of cracking in concrete structures. ACI 224-01. American Concrete Institute, Detroit, Michigan

  338. ACI Committee 318 (1995) Building code requirements for reinforced concrete. ACI 318-95. American Concrete Institute, Detroit, Michigan

  339. CEB-FIB Model Code 1990 (1993) CEB information report no. 213/214. Committee Euro-International DuBeton, Lausanne

  340. JSCE (1986) Standard specification for design and construction of concrete structures-part 1 (Design). Japan Society of Civil Engineers, SP- 1, Tokyo, Japan

  341. Mangat PS, Gurusamy K (1987) Chloride diffusion in steel fibre reinforced marine concrete. Cem Concr Res 17(3):385–396

    Article  Google Scholar 

  342. Aldea CM, Shah SP, Karr A (1999) Effect of cracking on water and chloride permeability of concrete. J Mater Civ Eng 11(3):181–187

    Article  Google Scholar 

  343. Balouch SU, Forth JP, Granju JL (2010) Surface corrosion of steel fibre reinforced concrete. Cem Concr Res 40(3):410–414

    Article  Google Scholar 

  344. Karlsson J (2014) Alternative Reinforcement Approaches-Extended service life of exposed concrete structures. Master of Science Thesis, Chalmers University of Technology

  345. De Rivaz B (2008) Steel fiber reinforced concrete (SFRC): the use of SFRC in precast segment for tunnelling. Water Energy Int 65(3):47–56

    Google Scholar 

  346. Tazaly Z (2012) Punching shear capacity of fibre reinforced concrete slabs with conventional reinforcement: computational analysis of punching models. Master of Science Thesis, KTH University

  347. Berrocal CG, Lundgren K, Löfgren I (2015) Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art. Cem Concr Res 80:69–85

    Article  Google Scholar 

  348. Berrocal CG, Löfgren I, Lundgren K, Tang L (2015) Corrosion initiation in cracked fibre reinforced concrete: influence of crack width, fibre type and loading conditions. Corros Sci 98:128–139

    Article  Google Scholar 

  349. Abbas S, Soliman AM, Nehdi ML (2015) Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr Build Mater 75:429–441

    Article  Google Scholar 

  350. Banthia N, Bhargava A (2007) Permeability of stressed concrete and role of fiber reinforcement. ACI Mater J 104(1):70–76

    Google Scholar 

  351. Vaishali GG, Rao HS (2012) Strength and permeability characteristics of fiber reinforced high performance concrete with recycled aggregates. Asian J Civ Eng 13(1):55–77

    Google Scholar 

  352. Tayeh BA, Bakar BA, Johari MM, Voo YL (2012) Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Constr Build Mater 36:538–548

    Article  Google Scholar 

  353. Toledo Filho RD, Koenders EAB, Formagini S, Fairbairn EMR (2012) Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability. Mater Des 36:880–888

    Article  Google Scholar 

  354. Behfarnia K, Behravan A (2014) Application of high performance polypropylene fibers in concrete lining of water tunnels. Mater Des 55:274–279

    Article  Google Scholar 

  355. Anastasiou EK, Papayianni I, Papachristoforou M (2014) Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater Des 59:454–460

    Article  Google Scholar 

  356. Granju JL, Balouch SU (2005) Corrosion of steel fibre reinforced concrete from the cracks. Cem Concr Res 35(3):572–577

    Article  Google Scholar 

  357. Ramezanianpour AA, Esmaeili M, Ghahari SA, Najafi MH (2013) Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr Build Mater 44:411–418

    Article  Google Scholar 

  358. Kakooei S, Akil HM, Dolati A, Rouhi J (2012) The corrosion investigation of rebar embedded in the fibers reinforced concrete. Constr Build Mater 35:564–570

    Article  Google Scholar 

  359. Ahmed SFU, Mihashi H (2007) A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cem Concr Compos 29(5):365–376

    Article  Google Scholar 

  360. Sanjuan MA, Andrade C, Bentur A (1998) Effect of polypropylene fibre reinforced mortars on steel reinforcement corrosion induced by carbonation. Mater Struct 31(5):343–349

    Article  Google Scholar 

  361. Wheat HG (2002) Using polymers to minimize corrosion of steel in concrete. Cem Concr Compos 24(1):119–126

    Article  Google Scholar 

  362. Al-Tayyib AHJ, Mesfer M, Zahrani A (1990) Corrosion of steel reinforcement in polypropylene fiber reinforced concrete structures. ACI Mater J 87(2):108–113

    Google Scholar 

  363. Toutanji H, McNeil S, Bayasi Z (1998) Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem Concr Res 28(7):961–968

    Article  Google Scholar 

  364. Gérard B, Breysse D, Ammouche A, Houdusse O, Didry O (1996) Cracking and permeability of concrete under tension. Mater Struct 29(3):141–151

    Article  Google Scholar 

  365. Kobayashi K, Iizuka T, Kurachi H, Rokugo K (2010) Corrosion protection performance of high performance fiber reinforced cement composites as a repair material. Cem Concr Compos 32(6):411–420

    Article  Google Scholar 

  366. Rapoport J, Aldea CM, Shah SP, Ankenman B, Karr A (2002) Permeability of cracked steel fiber-reinforced concrete. J Mater Civ Eng 14(4):355–358

    Article  Google Scholar 

  367. Lawler JS, Zampini D, Shah SP (2002) Permeability of cracked hybrid fiber-reinforced mortar under load. ACI Mater J 99(4):379–385

    Google Scholar 

  368. Blunt J, Jen G, Ostertag CP (2015) Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete. Corros Sci 92:182–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Afroughsabet.

Ethics declarations

Conflict of interest

The authors of this paper certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroughsabet, V., Biolzi, L. & Ozbakkaloglu, T. High-performance fiber-reinforced concrete: a review. J Mater Sci 51, 6517–6551 (2016). https://doi.org/10.1007/s10853-016-9917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9917-4

Keywords

Navigation