Skip to main content
Log in

A review of carbon dots in biological applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Luminescent carbon-based nanomaterials have inspired tremendous research interests due to their tunable optical properties as well as superior biocompatibility. In this review, distinct light emission properties of carbon dots (CDs) derived from different synthesis methods are summarized. The optical properties of as-synthesized CDs can be further controlled by element doping and surface functionalization of CDs for tunable band gap. Due to their low cytotoxicity and tunable optical behaviors, luminescent CDs have been extensively studied for their potential biomedical applications, such as analytical sensors, and bioimaging devices. This review presents a comprehensive overview of the emerging luminescent CDs and their applications as biosensors and bioimaging agents. The challenges and perspectives in the near future are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guldi DM, Illescas BM, Atienza CM, Wielopolskia M, Martin N (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597

    Article  Google Scholar 

  2. Liu J, Rinzler AG, Dai H et al (1998) Fullerene pipes. Science 280:1253–1256

    Article  Google Scholar 

  3. Barbot A, Di Bin C, Lucas B, Ratier B, Aldissi M (2013) N-type doping and thermoelectric properties of co-sublimed cesium-carbonate-doped fullerene. J Mater Sci 48:2785–2789. doi:10.1007/s10853-012-6824-1

    Article  Google Scholar 

  4. Sall M, Monnet I, Moisy F et al (2015) Track formation in III-N semiconductors irradiated by swift heavy ions and fullerene and re-evaluation of the inelastic thermal spike model. J Mater Sci 50:5214–5227. doi:10.1007/s10853-015-9069-y

    Article  Google Scholar 

  5. Malgas GF, Motaung DE, Arendse CJ (2012) Temperature-dependence on the optical properties and the phase separation of polymer–fullerene thin films. J Mater Sci 47:4282–4289. doi:10.1007/s10853-012-6278-5

    Article  Google Scholar 

  6. Laraoui A, Meriles CA (2013) Approach to dark spin cooling in a diamond nanocrystal. ACS Nano 7:3403–3410

    Article  Google Scholar 

  7. Laraoui A, Hodges JS, Meriles CA (2012) Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Nano Lett 12:3477–3482

    Article  Google Scholar 

  8. Yu M, George C, Cao Y, Wootton D, Zhou J (2014) Microstructure, corrosion, and mechanical properties of compression-molded zinc-nanodiamond composites. J Mater Sci 49:3629–3641. doi:10.1007/s10853-014-8066-x

    Article  Google Scholar 

  9. Borjanović V, Bistričić L, Pucić I et al (2016) Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J Mater Sci 51:1000–1016. doi:10.1007/s10853-015-9431-0

    Article  Google Scholar 

  10. Hola K, Bourlinos AB, Kozak O et al (2014) Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO- induced red-shift emission. Carbon 70:279–286

    Article  Google Scholar 

  11. Yu XJ, Liu JJ, Yu YC, Zuo SL, Li BS (2014) Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 68:718–724

    Article  Google Scholar 

  12. Hu LM, Sun Y, Li SL et al (2014) Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 67:508–513

    Article  Google Scholar 

  13. Li C-X, Yu C, Wang C-F, Chen S (2013) Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. J Mater Sci 48:6307–6311. doi:10.1007/s10853-013-7430-6

    Article  Google Scholar 

  14. Xu Q, Zhao J, Liu Y et al (2015) Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). J Mater Sci 50:2571–2576. doi:10.1007/s10853-015-8822-6

    Article  Google Scholar 

  15. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  16. Wang Z, Yin L, Zhang M et al (2014) Synthesis and characterization of Ag3PO4/multiwalled carbon nanotube composite photocatalyst with enhanced photocatalytic activity and stability under visible light. J Mater Sci 49:1585–1593. doi:10.1007/s10853-013-7841-4

    Article  Google Scholar 

  17. Rud J, Lovell L, Senn J, Qiao Q, Mcleskey J Jr (2005) Water soluble polymer/carbon nanotube bulk heterojunction solar cells. J Mater Sci 40:1455–1458. doi:10.1007/s10853-005-0582-2

    Article  Google Scholar 

  18. Tang P, Zhang R, Shi R, Bin Y (2015) Synergetic effects of carbon nanotubes and carbon fibers on electrical and self-heating properties of high-density polyethylene composites. J Mater Sci 50:1565–1574. doi:10.1007/s10853-014-8716-z

    Article  Google Scholar 

  19. Dinari M, Momeni MM, Goudarzirad M (2016) Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots. J Mater Sci 51:2964–2971. doi:10.1007/s10853-015-9605-9

    Article  Google Scholar 

  20. Zubair M, Mustafa M, Ali A, Doh YH, Choi KH (2015) Improvement of solution based conjugate polymer organic light emitting diode by ZnO–graphene quantum dots. J Mater Sci: Mater Electron 26:3344–3351. doi:10.1007/s10854-015-2837-2

    Google Scholar 

  21. Liu M, He L, Liu X, Liu C, Luo S (2014) Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. J Mater Sci 49:2263–2269. doi:10.1007/s10853-013-7922-4

    Article  Google Scholar 

  22. Wang X, Pei Y, Lu M, Lu X, Du X (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. doi:10.1007/s10853-014-8773-3

    Article  Google Scholar 

  23. Su S, Wang J, Wei J, Martínez-Zaguilán R, Qiu J, Wang S (2015) Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J Chem 39:5743–5749

    Article  Google Scholar 

  24. Wang J, Qiu J (2015) Luminescent graphene quantum dots: as emerging fluorescent materials for biological application. Sci Adv Mater 7:1979–1989

    Article  Google Scholar 

  25. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  Google Scholar 

  26. Cao L, Wang X, Meziani MJ et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  Google Scholar 

  27. Yang ST, Cao L, Luo PGJ et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309

    Article  Google Scholar 

  28. Tian L, Ghosh D, Chen W, Pradhan S, Chang XJ, Chen SW (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809

    Article  Google Scholar 

  29. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118

    Article  Google Scholar 

  30. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  Google Scholar 

  31. Zhou JG, Zhou XT, Li RY et al (2009) Electronic structure and luminescence center of blue luminescent carbon nanocrystals. Chem Phys Lett 474:320–324

    Article  Google Scholar 

  32. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  Google Scholar 

  33. Zhang ZP, Zhang J, Chen N, Qu LT (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890

    Article  Google Scholar 

  34. Shen JH, Zhu YH, Yang XL, Zong J, Zhang JM, Li CZ (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36:97–101

    Article  Google Scholar 

  35. Zhou XJ, Zhang Y, Wang C et al (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592–6599

    Article  Google Scholar 

  36. Wang J, Wei J, Su S, Qiu J (2015) Novel fluorescence resonance energy transfer optical sensors for vitamin B 12 detection using thermally reduced carbon dots. New J Chem 39:501–507

    Article  Google Scholar 

  37. Li Q, Ohulchanskyy TY, Liu R et al (2010) Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C 114:12062–12068

    Article  Google Scholar 

  38. Liu C, Zhang P, Zhai X et al (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613

    Article  Google Scholar 

  39. Milosavljevic V, Nguyen HV, Michalek P et al (2015) Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem Pap 69:192–201

    Article  Google Scholar 

  40. Xu XY, Ray R, Gu YL et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  Google Scholar 

  41. Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  Google Scholar 

  42. Li H, Ming H, Liu Y et al (2011) Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem 35:2666–2670

    Article  Google Scholar 

  43. Hou YX, Lu QJ, Deng JH, Li HT, Zhang YY (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    Article  Google Scholar 

  44. Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Agnew Chem 121:4668–4671

    Article  Google Scholar 

  45. Lai C-W, Hsiao Y-H, Peng Y-K, Chou P-T (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO 2 for cell imaging and drug release. J Mater Chem 22:14403–14409

    Article  Google Scholar 

  46. Yang Y, Wu D, Han S, Hu P, Liu R (2013) Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem Commun 49:4920–4922

    Article  Google Scholar 

  47. Li SH, Wang LY, Chusuei CC et al (2015) Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem Mater 27:1764–1771

    Article  Google Scholar 

  48. Kasibabu BSB, D’souza SL, Jha S, Singhal RK, Basu H, Kailasa SK (2015) One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal Method 7:2373–2378

    Article  Google Scholar 

  49. Dong YQ, Pang HC, Yang HB et al (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804

    Article  Google Scholar 

  50. Wu ZL, Zhang P, Gao MX et al (2013) One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins. J Mater Chem B 1:2868–2873

    Article  Google Scholar 

  51. Jin XZ, Sun XB, Chen G et al (2015) pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon 81:388–395

    Article  Google Scholar 

  52. Zheng XG, Wang HL, Gong Q et al (2015) Highly luminescent carbon nanoparticles as yellow emission conversion phosphors. Mater Lett 143:290–293

    Article  Google Scholar 

  53. Xu Q, Pu P, Zhao JG et al (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A 3:542–546

    Article  Google Scholar 

  54. Xu JY, Zhou Y, Cheng GF, Dong MT, Liu SX, Huang CB (2015) Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. Luminescence 30:411–415

    Article  Google Scholar 

  55. Tong GS, Wang JX, Wang RB et al (2015) Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). J Mater Chem B 3:700–706

    Article  Google Scholar 

  56. Wang B, Tang W, Lu H, Huang Z (2015) Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness. J Mater Sci 50:5411–5418. doi:10.1007/s10853-015-9085-y

    Article  Google Scholar 

  57. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475

    Article  Google Scholar 

  58. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    Article  Google Scholar 

  59. Zhang J, Yuan Y, Liang G, Yu SH (2015) Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci 2

  60. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  Google Scholar 

  61. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21:2445–2450

    Article  Google Scholar 

  62. Mitra S, Chandra S, Kundu T, Banerjee R, Pramanik P, Goswami A (2012) Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Adv 2:12129–12131

    Article  Google Scholar 

  63. Zhang LL, Han YJ, Zhu JB, Zhai YL, Dong SJ (2015) Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal Chem 87:2033–2036

    Article  Google Scholar 

  64. Lopez C, Zougagh M, Algarra M et al (2015) Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta 132:845–850

    Article  Google Scholar 

  65. Chen L, Li YN, Gu W (2015) Synthesis of carbon dots by microwave pyrolysis of polyol in the presence of inorganic ions. Nanosci Nanotechnol Lett 7:6–9

    Article  Google Scholar 

  66. Dong YJ, Su M, Chen PY, Sun HW (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, l-cysteine and glutathione. Microchim Acta 182:1071–1077

    Article  Google Scholar 

  67. Li L, Yu B, You T (2015) Nitrogen and sulfur CO-doped carbon dots for highly selective and sensitive detection of Hg (II) Ions. Biosens Bioelectron 74:263–269

    Article  Google Scholar 

  68. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2010) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47:932–934

    Article  Google Scholar 

  69. Jiang H, Chen F, Lagally MG, Denes FS (2009) New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir 26:1991–1995

    Article  Google Scholar 

  70. Tao HQ, Yang K, Ma Z et al (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8:281–290

    Article  Google Scholar 

  71. Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T (2006) Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 110:831–836

    Article  Google Scholar 

  72. Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W (2011) Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49:3134–3140

    Article  Google Scholar 

  73. Zhang XY, Wang SQ, Zhu CY et al (2013) Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci 397:39–44

    Article  Google Scholar 

  74. Qiao Z-A, Wang Y, Gao Y et al (2009) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46:8812–8814

    Article  Google Scholar 

  75. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458

    Article  Google Scholar 

  76. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541

    Article  Google Scholar 

  77. Wang JL, Su SH, Wei JH et al (2015) Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E 72:17–24

    Article  Google Scholar 

  78. Jahan S, Mansoor F, Naz S, Lei J, Kanwal S (2013) Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal Chem 85:10232–10239

    Article  Google Scholar 

  79. Shen P, Xia Y (2014) Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 86:5323–5329

    Article  Google Scholar 

  80. Xue W, Lin Z, Chen H, Lu C, Lin J-M (2011) Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J Phys Chem C 115:21707–21714

    Article  Google Scholar 

  81. Li HT, He XD, Liu Y et al (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    Article  Google Scholar 

  82. Yang ZC, Wang M, Yong AM et al (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47:11615–11617

    Article  Google Scholar 

  83. Ma Z, Ming H, Huang H, Liu Y, Kang Z (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36:861–864

    Article  Google Scholar 

  84. Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q (2013) Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 5:11665–11671

    Article  Google Scholar 

  85. Chen Q-L, Wang C-F, Chen S (2013) One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes. J Mater Sci 48:2352–2357. doi:10.1007/s10853-012-7016-8

    Article  Google Scholar 

  86. Sk MP, Chattopadhyay A (2014) Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor. RSC Adv 4:31994–31999

    Article  Google Scholar 

  87. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  Google Scholar 

  88. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–8290

    Article  Google Scholar 

  89. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369

    Article  Google Scholar 

  90. Kenneth N (2013) Versatility with carbon dots–from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv 3:15604–15607

    Article  Google Scholar 

  91. Liao H, Jiang C, Liu W et al (2015) Fluorescent nanoparticles from several commercial beverages: their properties and potential application for bioimaging. J Agric Food Chem 63:8527–8533

    Article  Google Scholar 

  92. Jiang C, Wu H, Song X, Ma X, Wang J, Tan M (2014) Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta 127:68–74

    Article  Google Scholar 

  93. Wang Z, Liao H, Wu H, Wang B, Zhao H, Tan M (2015) Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Method 7:8911–8917

    Article  Google Scholar 

  94. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Agnew Chem 124:9431–9435

    Article  Google Scholar 

  95. Sk MP, Jaiswal A, Paul A, Ghosh SS, Chattopadhyay A (2012) Presence of amorphous carbon nanoparticles in food caramels. Sci Rep 2

  96. England MW, Patil AJ, Mann S (2015) Synthesis and confinement of carbon dots in lysozyme single crystals produces ordered hybrid materials with tuneable luminescence. Chem Eur J 21:9008–9013

    Article  Google Scholar 

  97. Xu Z-Q, Yang L-Y, Fan X-Y et al (2014) Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon 66:351–360

    Article  Google Scholar 

  98. Liu S, Tian J, Wang L et al (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv Mater 24:2037–2041

    Article  Google Scholar 

  99. Kargbo O, Jin Y, Ding S-N (2015) Recent advances in luminescent carbon dots. Curr Anal Chem 11:4–21

    Article  Google Scholar 

  100. Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    Article  Google Scholar 

  101. Li HT, Kang ZH, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    Article  Google Scholar 

  102. Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382

    Article  Google Scholar 

  103. Bourlinos AB, Zboril R, Petr J, Bakandritsos A, Krysmann M, Giannelis EP (2012) Luminescent surface quaternized carbon dots. Chem Mater 24:6–8

    Article  Google Scholar 

  104. Wang W, Cheng L, Liu WG (2014) Biological applications of carbon dots. Sci China Chem 57:522–539

    Article  Google Scholar 

  105. Li HT, He XD, Kang ZH et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  Google Scholar 

  106. Pan DY, Zhang JC, Li Z, Wu C, Yan XM, Wu MH (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46:3681–3683

    Article  Google Scholar 

  107. Jiang K, Sun S, Zhang L et al (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363

    Article  Google Scholar 

  108. Wang X, Cao L, Yang ST et al (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49:5310–5314

    Article  Google Scholar 

  109. Bourlinos AB, Trivizas G, Karakassides MA et al (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    Article  Google Scholar 

  110. Wei WL, Xu C, Wu L, Wang JS, Ren JS, Qu XG (2014) Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4

  111. Qian ZS, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform (vol 20, pg 254, 2014). Chem Eur J 20:2983

    Article  Google Scholar 

  112. Zhai XY, Zhang P, Liu CJ et al (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957

    Article  Google Scholar 

  113. Jiang J, He Y, Li SY, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48:9634–9636

    Article  Google Scholar 

  114. Zhuo Y, Miao H, Zhong D, Zhu SS, Yang XM (2015) One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Mater Lett 139:197–200

    Article  Google Scholar 

  115. Sun YP, Wang X, Lu FS et al (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112:18295–18298

    Article  Google Scholar 

  116. Anilkumar P, Wang X, Cao L et al (2011) Toward quantitatively fluorescent carbon-based “quantum’’ dots. Nanoscale 3:2023–2027

    Article  Google Scholar 

  117. Wang F, Pang SP, Wang L, Li Q, Kreiter M, Liu CY (2010) One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater 22:4528–4530

    Article  Google Scholar 

  118. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21:1027–1031

    Article  Google Scholar 

  119. Kong WQ, Liu J, Liu RH et al (2014) Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale 6:5116–5120

    Article  Google Scholar 

  120. Zhu SJ, Wang L, Zhou N et al (2014) The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem Commun 50:13845–13848

    Article  Google Scholar 

  121. Yang ST, Wang X, Wang HF et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    Article  Google Scholar 

  122. Bhirde AA, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  Google Scholar 

  123. Wang YL, Anilkumar P, Cao L et al (2011) Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med 236:1231–1238

    Article  Google Scholar 

  124. Huang XL, Zhang F, Zhu L et al (2013) Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7:5684–5693

    Article  Google Scholar 

  125. Li N, Liang XF, Wang LL et al (2012) Biodistribution study of carbogenic dots in cells and in vivo for optical imaging. J Nanopart Res 14:1–9

    Google Scholar 

  126. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2 + and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  Google Scholar 

  127. Qu KG, Wang JS, Ren JS, Qu XG (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Eur J 19:7243–7249

    Article  Google Scholar 

  128. Lu WB, Qin XY, Liu S et al (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357

    Article  Google Scholar 

  129. Zhao AD, Zhao CQ, Li M, Ren JS, Qu XG (2014) Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2 +/Fe3 + and cell imaging. Anal Chim Acta 809:128–133

    Article  Google Scholar 

  130. Salinas-Castillo A, Ariza-Avidad M, Pritz C et al (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49:1103–1105

    Article  Google Scholar 

  131. Wei WL, Xu C, Ren JS, Xu BL, Qu XG (2012) Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem Commun 48:1284–1286

    Article  Google Scholar 

  132. Gupta A, Chaudhary A, Mehta P et al (2015) Nitrogen doped thiol functionalized carbon dots for ultrasensitive Hg(II) detection. Chem Commun 51:10750–10753

    Article  Google Scholar 

  133. Wang C, Wang C, Xu P, Li A, Chen Y, Zhuo K (2016) Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg2+. J Mater Sci 51:861–867. doi:10.1007/s10853-015-9410-5

    Article  Google Scholar 

  134. Cui X, Zhu L, Wu J et al (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512

    Article  Google Scholar 

  135. Kong B, Zhu AW, Ding CQ, Zhao XM, Li B, Tian Y (2012) Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24:5844–5848

    Article  Google Scholar 

  136. Li HL, Zhang YW, Wang L, Tian JQ, Sun XP (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47:961–963

    Article  Google Scholar 

  137. Noh EH, Ko HY, Lee CH, Jeong MS, Chang YW, Kim S (2013) Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J Mater Chem B 1:4438–4445

    Article  Google Scholar 

  138. Maiti S, Das K, Das PK (2013) Label-free fluorimetric detection of histone using quaternized carbon dot-DNA nanobiohybrid. Chem Commun 49:8851–8853

    Article  Google Scholar 

  139. Yu CM, Li XZ, Zeng F, Zheng FY, Wu SZ (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49:403–405

    Article  Google Scholar 

  140. Zhu AW, Qu Q, Shao XL, Kong B, Tian Y (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed 51:7185–7189

    Article  Google Scholar 

  141. Lei JY, Yang LG, Lu DL et al (2015) Carbon dot-incorporated PMO nanoparticles as versatile platforms for the design of ratiometric sensors, multichannel traceable drug delivery vehicles, and efficient photocatalysts. Adv Opt Mater 3:57–63

    Article  Google Scholar 

  142. Gao X, Ding CQ, Zhu AW, Tian Y (2014) Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells. Anal Chem 86:7071–7078

    Article  Google Scholar 

  143. Jana J, Ganguly M, Pal T (2015) Intriguing cysteine induced improvement of the emissive property of carbon dots with sensing applications. Phys Chem Chem Phys 17:2394–2403

    Article  Google Scholar 

  144. Deng JH, Lu QJ, Hou YX et al (2015) Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem 87:2195–2203

    Article  Google Scholar 

  145. Ni P, Dai H, Li Z et al (2015) Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144:258–262

    Article  Google Scholar 

  146. Bhaisare ML, Pandey S, Khan MS, Talib A, Wu HF (2015) Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift. Talanta 132:572–578

    Article  Google Scholar 

  147. Luo PJG, Sahu S, Yang ST et al (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127

    Article  Google Scholar 

  148. Goh EJ, Kim KS, Kim YR et al (2012) Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules 13:2554–2561

    Article  Google Scholar 

  149. Hsu PC, Shih ZY, Lee CH, Chang HT (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917–920

    Article  Google Scholar 

  150. Sun YP, Zhou B, Lin Y et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  Google Scholar 

  151. Wei JM, Zhang X, Sheng YZ et al (2014) Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 38:906–909

    Article  Google Scholar 

  152. Zhu SJ, Meng QN, Wang L et al (2013) Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  Google Scholar 

  153. Liu J, Liu XL, Luo HJ, Gao YF (2014) One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties. Rsc Adv 4:7648–7654

    Article  Google Scholar 

  154. Wang J, Zhang P, Huang C, Liu G, Leung KC-F, Wang Y-XJ (2015) High performance photoluminescent carbon dots for in vitro and in vivo bioimaging: effect of nitrogen doping ratios. Langmuir 31:8063–8073

    Article  Google Scholar 

  155. Jia XF, Li J, Wang EK (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4:5572–5575

    Article  Google Scholar 

  156. Zong J, Zhu YH, Yang XL, Shen JH, Li CZ (2011) Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun 47:764–766

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Science Foundation (NSF) (Grant #1228127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Qiu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Qiu, J. A review of carbon dots in biological applications. J Mater Sci 51, 4728–4738 (2016). https://doi.org/10.1007/s10853-016-9797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9797-7

Keywords

Navigation