Skip to main content

Advertisement

Log in

Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a cationic polymer, N-alkylated poly (4-vinylpyridine) was applied for the surface functionalization of nanodiamond (ND). The facile route not only settled the problems of agglomeration and poor dispersion stability of ND but also rendered the nanomaterial antibacterial property. Chemical modification of the particles was confirmed by FT-IR spectroscopy and 1HNMR, and the cationic polymer contents were determined by TGA studies. The particle diameters and dispersity of functionalized NDs were investigated by TEM and DLS measurements. It was found that extremely tight core aggregates (100–200 nm) were broken into tiny nanoparticles (20–30 nm) through functionalization with NPVP-propyl or NPVP-hexyl, which gave stable and homogeneous functionalized ND particles in colloidal solution. The antibacterial tests against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) showed that the cationic polymer-modified ND exerted certain antibacterial activity. The FE-SEM images indicated that NPVP-hexyl-ND particles were attached to the cell wall surface of E. coli, which subsequently led to the formation of nanoscale holes on cell membrane and eventually the serious destruction of cell wall. We suspected that the interaction of NPVP-hexyl-ND with bacteria may come from the electrostatic interactions, the intermolecular and surface forces between functionalized nanoparticles and cell membranes, which may damage the outer membranes of bacteria and result in cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23

    Article  Google Scholar 

  2. Passeri D, Rinaldi F, Ingallina C et al (2015) Biomedical applications of nanodiamonds: an overview. J Nanosci Nanotechnol 15:972–988

    Article  Google Scholar 

  3. Eldawud R, Reitzig M, Opitz J et al (2016) Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate. Nanotechnology 27:085107

    Article  Google Scholar 

  4. Alhaddad A, Adam MP, Botsoa J et al (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7:3087–3095

    Article  Google Scholar 

  5. Liu KK, Zheng WW, Wang CC et al (2010) Covalent linkage of nanodiamond–paclitaxel for drug delivery and cancer therapy. Nanotechnology 21:315106

    Article  Google Scholar 

  6. Xi G, Robinson E, Mania-Farnell B et al (2014) Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine 10:381–391

    Article  Google Scholar 

  7. Chou CC, Lee SH (2008) Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant. J Mater Process Technol 201:542–547

    Article  Google Scholar 

  8. Hsin YL, Chu H-Y, Jeng Y-R, Huang Y-H, Wang MH, Chang CK (2011) In situ de-agglomeration and surface functionalization of detonation nanodiamond, with the polymer used as an additive in lubricant oil. J Mater Chem 21:13213–13222

    Article  Google Scholar 

  9. Zhang Q, Mochalin VN, Neitzel I et al (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32:87–94

    Article  Google Scholar 

  10. Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q (2010) Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31:8410–8418

    Article  Google Scholar 

  11. Kuo Y, Hsu TY, Wu YC, Chang HC (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34:8352–8360

    Article  Google Scholar 

  12. Bertrand JR, Pioche-Durieu C, Ayala J et al (2015) Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45:93–98

    Article  Google Scholar 

  13. Krüger A, Kataoka F, Ozawa M et al (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730

    Article  Google Scholar 

  14. Chang LY, Osawa E, Barnard AS (2011) Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3:958–962

    Article  Google Scholar 

  15. Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930

    Article  Google Scholar 

  16. Niu KY, Zheng HM, Li ZQ, Yang J, Sun J, Du XW (2011) Laser dispersion of detonation nanodiamonds. Angew Chem Int Ed Engl 50:4099–4102

    Article  Google Scholar 

  17. Basiuk EV, Santamaría-Bonfil A, Meza-Laguna V et al (2013) Solvent-free covalent functionalization of nanodiamond with amines. Appl Surf Sci 275:324–334

    Article  Google Scholar 

  18. Haleem YA, Liu D, Chen W et al (2015) Surface functionalization and structure characterizations of nanodiamond and its epoxy based nanocomposites. Compos Part B 78:480–487

    Article  Google Scholar 

  19. Wahab Z, Foley EA, Pellechia PJ, Anneaux BL, Ploehn HJ (2015) Surface functionalization of nanodiamond with phenylphosphonate. J Colloid Interface Sci 450:301–309

    Article  Google Scholar 

  20. Khan M, Shahzad N, Xiong C et al (2015) Dispersion behavior and the influences of ball milling technique on functionalization of detonated nano-diamonds. Diam Relat Mater 61:32–40

    Article  Google Scholar 

  21. Zhang X, Wang S, Liu M et al (2013) Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicol Res 2:335

    Article  Google Scholar 

  22. Liang Y, Ozawa M, Krueger A (2009) A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3:2288–2296

    Article  Google Scholar 

  23. Xu X, Yu Z, Zhu Y, Wang B (2005) Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diam Relat Mater 14:206–212

    Article  Google Scholar 

  24. Kruger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16:2322–2328

    Article  Google Scholar 

  25. Martín R, Heydorn PCN, Alvaro M, Garcia H (2009) General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem Mater 21:4505–4514

    Article  Google Scholar 

  26. Zheng W-W, Hsieh Y-H, Chiu Y-C, Cai S-J, Cheng C-L, Chen C (2009) Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J Mater Chem 19:8432–8441

    Article  Google Scholar 

  27. Romanova EE, Akiel R, Cho FH, Takahashi S (2013) Grafting nitroxide radicals on nanodiamond surface using click chemistry. J Phys Chem A 117:11933–11939

    Article  Google Scholar 

  28. Chang IP, Hwang KC, Ho JA, Lin CC, Hwu RJ, Horng JC (2010) Facile surface functionalization of nanodiamonds. Langmuir 26:3685–3689

    Article  Google Scholar 

  29. Takimoto T, Chano T, Shimizu S et al (2010) Preparation of fluorescent diamond nanoparticles stably dispersed under a physiological environment through multistep organic transformations. Chem Mater 22:3462–3471

    Article  Google Scholar 

  30. Khanal M, Turcheniuk V, Barras A et al (2015) Toward multifunctional “clickable” diamond nanoparticles. Langmuir 31:3926–3933

    Article  Google Scholar 

  31. Gibson N, Shenderova O, Luo TJM et al (2009) Colloidal stability of modified nanodiamond particles. Diam Relat Mater 18:620–626

    Article  Google Scholar 

  32. Khalilnezhad P, Sajjadi SA, Zebarjad SM (2014) Effect of nanodiamond surface functionalization using oleylamine on the scratch behavior of polyacrylic/nanodiamond nanocomposite. Diam Relat Mater 45:7–11

    Article  Google Scholar 

  33. Hajipour MJ, Fromm KM, Ashkarran AA, Serpooshan V (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  Google Scholar 

  34. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  Google Scholar 

  35. Xia Y (2008) Nanomaterials at work in biomedical research. Nat Mater 7:758–760

    Article  Google Scholar 

  36. Chatterjee A, Perevedentseva E, Jani M et al (2015) Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J Biomed Opt 20:051014

    Article  Google Scholar 

  37. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K (2014) Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8:6475–6483

    Article  Google Scholar 

  38. Perevedentseva E, Cheng C-Y, Chung P-H (2007) The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling. Nanotechnology 18:315102

    Article  Google Scholar 

  39. Xu T, Wu L, Yu Y, Li W, Zhi J (2014) Synthesis and characterization of diamond–silver composite with anti-bacterial property. Mater Lett 114:92–95

    Article  Google Scholar 

  40. Huang J, Koepsel RR, Murata H, Wu W, Lee SB (2008) Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795

    Article  Google Scholar 

  41. Palermo EF, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10:1416–1428

    Article  Google Scholar 

  42. Farah S, Aviv O, Laout N, Ratner S, Beyth N, Domb AJ (2015) Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity. Colloids Surf B 128:608–613

    Article  Google Scholar 

  43. Cho H-B, Nguyen ST, Nakayama T et al (2013) Oxidation of nanodiamonds and modulation of their assembly in polymer-based nanohybrids by field-inducement. J Mater Sci 48:4151–4162. doi:10.1007/s10853-013-7228-6

    Article  Google Scholar 

  44. Tan L, Bai L, Zhu H et al (2015) Stable antifouling coatings by hydrogen-bonding interaction between poly(2-methyl-2-oxazoline)-block-poly(4-vinyl pyridine) and poly(acrylic acid). J Mater Sci 50:4898–4913. doi:10.1007/s10853-015-9035-8

    Article  Google Scholar 

  45. Tavengwa NT, Cukrowska E, Chimuka L (2013) Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta 116:670–677

    Article  Google Scholar 

  46. Sambhy V, Peterson BR, Sen A (2008) Multifunctional silane polymers for persistent surface derivatization and their antimicrobial properties. Langmuir 24:7549–7558

    Article  Google Scholar 

  47. Li L, Davidson JL, Lukehart CM (2006) Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44:2308–2315

    Article  Google Scholar 

  48. Wang J, Zhao Z, Gong F, Li S, Zhang S (2009) Synthesis of soluble poly(arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes. Macromolecules 42:8711–8717

    Article  Google Scholar 

  49. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. JACS 128:9798–9808

    Article  Google Scholar 

  50. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8:3016–3027

    Article  Google Scholar 

  51. Liang Y, Meinhardt T, Jarre G et al (2011) Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 354:23–30

    Article  Google Scholar 

  52. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28:4870–4879

    Article  Google Scholar 

  53. Hong S, Leroueil PR, Janus EK, Peter JL, Kober M-M (2006) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconj Chem 17:728–734

    Article  Google Scholar 

  54. Carpenter AW, Slomberg DL, Rao KS, Schoenfisch MH (2011) Influence of scaffold size on bactericidal activity of nitric oxide-releasing silica nanoparticles. ACS Nano 5:7235–7244

    Article  Google Scholar 

  55. Zhou Y, Yang J, He T, Shi H, Cheng X, Lu Y (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454

    Article  Google Scholar 

  56. Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber. Langmuir 24:2051–2056

    Article  Google Scholar 

  57. Song J, Kong H, Jang J (2009) Enhanced antibacterial performance of cationic polymer modified silica nanoparticles. Chem Commun 36:5418–5420

    Article  Google Scholar 

  58. Song J, Kong H, Jang J (2011) Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloid Surf B 82:651–656

    Article  Google Scholar 

  59. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985

    Article  Google Scholar 

  60. Zgurskaya HI, López CA, Gnanakaran S (2015) Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 1:512–522

    Article  Google Scholar 

  61. Chen CZ, Beck-Tan NC, Dhurjati P (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1:473–480

    Article  Google Scholar 

  62. Leroueil PR, Berry SA, Duthie K (2008) Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 8:420–424

    Article  Google Scholar 

  63. Kenawy ER, Mahmoud YAG (2003) Synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol Biosci 3:107–116

    Article  Google Scholar 

  64. Timofeeva LM, Kleshcheva NA, Moroz AF, Didenko LV (2009) Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity. Biomacromolecules 10:2976–2986

    Article  Google Scholar 

  65. Hu B, Chen X, Zuo Y, Liu Z, Xing X (2014) Dual action bactericides: quaternary ammonium/N-halamine-functionalized cellulose fiber. J Appl Polym Sci 131:40070

    Article  Google Scholar 

  66. Wang B, Zhang L, Bae SC, Granick S (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA 105:18171–18175

    Article  Google Scholar 

  67. Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880

    Article  Google Scholar 

  68. Williams OA, Hees J, Dieker C (2010) Size-dependent reactivity of diamond nanoparicles. ACS Nano 4:4824–4830

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities China (No. 30920140112002) and the Grant from the National Natural Science Foundation of China (No. 81130078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Peng, X., Chen, X. et al. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity. J Mater Sci 52, 1856–1867 (2017). https://doi.org/10.1007/s10853-016-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0475-6

Keywords

Navigation