Skip to main content
Log in

Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Assessment of the empirical reactive force field ReaxFF to predict the formation of amorphous silica from its crystalline structure and the determination of mechanical properties under tension using molecular dynamics simulations is presented. Detailed procedures for preparing amorphous silica from crystalline silica are presented and the atomic structure is in good agreement with experimental results. Tensile properties of silica are predicted over a wide range of strain rates (2.3 × 108 s−1–1.0 × 1015 s−1) allowing comparison with results reported in the literature for other force fields. Quasi-static modulus obtained from power-law fitting of the low-stain rate modulus predicted by ReaxFF is in good agreement with experimental results. A transition strain rate of approximately \( 2.5 \times 10^{11} {\text{s}}^{ - 1} \) is identified where modulus increases rapidly to a plateau level. Tensile strength also increases significantly in this range of strain rate and plateaus at the theoretical upper bound for silica. A detailed study is presented to understand the mechanisms associated with strain rate effects on the overall stress–strain response of silica. Bond breakage which evolves into void growth leading to failure is predicted to occur at approximately 27 % strain for all strain rates. Stress relaxation simulations indicates that the transition strain rate occurs when the characteristic time for high-strain rate loading and stress relaxation times are the same order. The effects of cooling rate and temperature on the structure and the stress–strain response of the silica glass are also investigated. Low-cooling rate and low-cooling temperature enhance the properties of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Kupiec K, Konieczka P, Namiesnik J (2009) Characteristics, chemical modification processes as well as the application of silica and its modified form. Crit Rev Anal Chem 39(2):60–69

    Article  Google Scholar 

  2. Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278

    Article  Google Scholar 

  3. Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84(3):387–412

    Article  Google Scholar 

  4. Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638

    Article  Google Scholar 

  5. Thyagarajan KS, Ghatak A (2007) Fiber Optic Essentials. John Wiley & Sons Inc, New Jersey, USA

    Book  Google Scholar 

  6. Kurkjian CR, Krause JT, Matthewson MJ (1989) Strength and fatigue of silica optical fibers. J Lightwave Technol 7(9):1360–1370

    Article  Google Scholar 

  7. Wallenberger FT, Bingham PA (2010) Fiberglass and glass technology: energy-friendly compositions and applications. Springer, New York

    Book  Google Scholar 

  8. Mallick PK (1993) Fiber reinforced composites: materials, manufacturing and design, 3rd edn. CRC Press, Florida

    Google Scholar 

  9. Schaible M (1999) Empirical molecular dynamics modeling of silicon and silicon dioxide: a review. Crit Rev Solid State Mater Sci 24(4):265–323

    Article  Google Scholar 

  10. Ochoa R, Swiler TP, Simmons JH (1991) Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations. J Non-Cryst Solids 128:57–68

    Article  Google Scholar 

  11. Muralidharan K, Oh KD, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanism in amorphous silica. J Mater Sci 42:4159–4169. doi:10.1007/s10853-007-1638-2

    Article  Google Scholar 

  12. Pedone A, Malavasi G, Menziani MC, Segre U (2008) Cormack AN (2008) Molecular dynamics studies of stress-strain behavior of silica glass under a tensile load. Chem Mater 20:4356–4366

    Article  Google Scholar 

  13. Erikson RL, Hostelter CJ (1987) Application of empirical ionic models to SiO2 liquid: potential model approximations and integration of SiO2 polymorph data. Geochim Cosmochim Acta 51:1209–1218

    Article  Google Scholar 

  14. Smith WA, Michalske TM (1990) US-DOE Contract DE-AC04-0DPOO789

  15. Proctor BA, Whitney I, Johnson JW (1967) The strength of fused silica. Proc R Soc London Ser A 297(1451):534–557

    Article  Google Scholar 

  16. Wallenberger FT, Watson JC, Li H (2001) Glass fibers. ASM Handbook 21:27–34

    Google Scholar 

  17. Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52(2):99–105

    Article  Google Scholar 

  18. Swiler TP, Simmons JH, Wright AC (1995) Molecular dynamics study of brittle fracture in silica glass and cristobalite. J Non-Cryst Solids 182:68–77

    Article  Google Scholar 

  19. Born VM, Mayer JE (1932) Zur Gittertheorie der Ionenkristalle. Z für Phys 75:1–18

    Article  Google Scholar 

  20. Huggins ML, Mayer JE (1933) Interatomic distances in crystals of the alkali halides. J Chem Phys 1:643–646

    Article  Google Scholar 

  21. Mayer JE (1933) Dispersion and polarizability and the van der Waals potential in the alkali halides. J Chem Phys 1:270–279

    Article  Google Scholar 

  22. Soules TF (1990) Computer simulation of glass structures. J Non-Cryst Solids 123:48–70

    Article  Google Scholar 

  23. van Beest BWH, Kramer GJ, van Santeen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958

    Article  Google Scholar 

  24. Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U (2006) A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J Phys Chem B 110:11780–11795

    Article  Google Scholar 

  25. Wang J, Rajendran AM, Dongare AM (2015) Atomic scale modeling of shock response of fused silica α-quartz. J Mater Sci 50:8128–8141. doi:10.1007/s10853-015-9386-1

    Article  Google Scholar 

  26. Tersoff J (1988) New empirical approach for the structure and energy of covalent system. Phys Rev B 37(12):6991–7000

    Article  Google Scholar 

  27. Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339

    Article  Google Scholar 

  28. Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) 1st principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872

    Article  Google Scholar 

  29. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  30. ReaxFF manual. http://www.engr.psu.edu/adri/ReaxffManual.aspx

  31. van Duin ACT, Strachan A, Stewman S, Zhang Q, Xin Xu, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide system. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  32. Fogarty JC, Aktulga HM, Grama AY, van Duin ACT, Pandit S (2010) A reactive molecular dynamics simulation of the silica-water interface. J Chem Phys 132:174704

    Article  Google Scholar 

  33. Personal Communication with Dr. Joseph C. Fogarty and Dr. Adri C.T. van Duin

  34. Plimpton S (1995) Fast parallel algorithms for short range molecular dynamics. J Comp Phys 117(1):1–19

    Article  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  36. http://accelrys.com/products/materials-studio/index.html

  37. Bruckner R (1970) Properties and structure of vitreous silica- I. J Non-Cryst Solids 5:123–175

    Article  Google Scholar 

  38. Clausius R (1870) On a mechanical theorem applicable to heat. Philos Mag 40:122–127

    Google Scholar 

  39. Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382

    Article  Google Scholar 

  40. Vollmayr K, Kob W, Binder K (1996) Cooling rate effects in amorphous silica: a computer simulation study. Phys Rev B 54(22):15808–15827

    Article  Google Scholar 

  41. Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2:164172

    Article  Google Scholar 

  42. Vashishta P, Kalia RK, Rino JP (1990) Interaction potential for SiO2: a molecular dynamics study of structural correlations. Phys Rev B 41(7):12197–12209

    Article  Google Scholar 

  43. Wyckoff RWG (1963) Crystal structures: volume 1. Wiley, New York

    Google Scholar 

  44. Konnert JH, Karle J (1973) Computation of radial distribution functions for glassy materials. Acta Crystallogr A 29:702–710

    Article  Google Scholar 

  45. Da Silvaa JRG, Pinatti DG, Anderson CE, Rudee ML (1975) A refinement of the structure of vitreous silica. Phil Mag 31(3):713–717

    Article  Google Scholar 

  46. Tsiok OB, Brazhkin VV, Lyapin AG, Khvostantsev LG (1998) Logarithmic kinetics of the amorphous-amorphous transformations in SiO2 and GeO2 glasses under high pressure. Phys Rev Lett 80(5):999–1002

    Article  Google Scholar 

  47. Paramo T, East A, Garzon D, Ulmschneider MB, Bond PJ (2014) Efficient characterization of protein cavities within molecular simulation trajectories: trj_cavity. J Chem Theory Comput 10:2151–2164

    Article  Google Scholar 

  48. Susman S, Volin KJ, Price DL, Grimsditch M, Rino JP, Kalia RK, Vashishta P (1991) Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and molecular-dynamics study. Phys Rev B 43(1):1194–1197

    Article  Google Scholar 

  49. Tilocca A, de Leeuw NH, Cormack AN (2006) Shell-model molecular dynamics calculations of modified silicate glasses. Phys Rev B 73:104209

    Article  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. We would like to thank Dr. Joseph C. Fogarty and Dr. Adri C. T. van Duin for providing us the optimized ReaxFF parameters set for silica. We would also like to thank Dr. Robert M. Elder and Dr. Teresa Paramo for helpful discussion on void analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib C. Chowdhury.

Ethics declarations

Conflict of Interest

We do not have any conflict of interest.

Appendix: relaxation data

Appendix: relaxation data

See Figs. 17, 18, 19, 20, and 21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S.C., Haque, B.Z.(. & Gillespie, J.W. Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J Mater Sci 51, 10139–10159 (2016). https://doi.org/10.1007/s10853-016-0242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0242-8

Keywords

Navigation