Skip to main content
Log in

Effects of aluminum nitride nanoparticles on the space charge behavior of cellulose paper

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellulose insulation paper as a part of oil–paper insulation systems plays an important role in the reliability of converter transformers. The reliability of converter transformers equipped with traditional cellulose paper is adversely affected by space charge under DC voltage. The addition of nanoparticles into other dielectrics has been demonstrated to improve electrical performance. However, studies on the space charge behavior of cellulose paper reinforced with nanoparticles are rarely reported. This paper presents the results of a study aimed at elucidating the effect of nano-aluminum nitride (AlN) concentration on the space charge behavior of cellulose paper. Samples with various nano-AlN concentrations were fabricated and pretreated first. The micro-morphologies of prepared cellulose papers were observed using a field-emission scanning electron microscope. The space charge distribution was measured using a pulsed electroacoustic instrument. The results show the dependence of the charge injection as well as charge dissipation on the concentration of nano-AlN. The isothermal decay current method is used to obtain trap information. Based on the density and distribution of traps, the underlying mechanism of the effect of various concentrations on the space charge behavior is theoretically explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sarathi R, Koperundevi G (2009) Investigation of partial discharge activity of single conducting particle in transformer oil under DC voltages using UHF technique. IET Sci Meas Technol 3(5):325–333

    Article  Google Scholar 

  2. Sarathi R, Reid AJ, Martin DJ (2008) Partial discharge study in transformer oil due to particle movement under DC voltage using the UHF technique. Electr Power Syst Res 78(11):1819–1825

    Article  Google Scholar 

  3. Du BX, Zhang JG, Liu DS (2015) Interface charge behavior of multi-layer oil-paper insulation under DC and polarity reversal voltages. IEEE Trans Dielectr Electr Insul 22(5):2628–2638

    Google Scholar 

  4. Sarathi R, Koperundevi G (2008) UHF technique for identification of partial discharge in a composite insulation under AC and DC voltages. IEEE Trans Dielectr Electr Insul 15(6):1724–1730

    Article  Google Scholar 

  5. Huang M, Zhou Y, Chen W, Lu L, Jin F, Huang J (2015) Space charge dynamics at the physical interface in oil-paper insulation under DC voltage. IEEE Trans Dielectr Electr Insul 22(3):1739–1746

    Article  Google Scholar 

  6. Wu K, Zhu Q, Wang H, Wang X, Li S (2014) Space charge behavior in the sample with two layers of oil-immersed-paper and oil. IEEE Trans Dielectr Electr Insul 21(4):1857–1865

    Article  Google Scholar 

  7. Wang Y, Li J, Wu S, Sun P (2013) Influence of electrical aging on space charge dynamics of oil-impregnated paper insulation under AC-DC combined voltages. J Electr Eng Technol 8(6):1512–1519

    Article  Google Scholar 

  8. Zhou Y, Huang M, Chen W, Lu L, Jin F, Huang J (2015) Space charge behavior evolution with thermal aging of oil-paper insulation. IEEE Trans Dielectr Electr Insul 22(3):1381–1388

    Article  Google Scholar 

  9. Kohman GT (1939) Cellulose as an insulating material. Ind Eng Chem 31(7):807–817

    Article  Google Scholar 

  10. Amin M, Ali M (2015) Polymer nanocomposites for high voltage outdoor insulation applications. Rev Adv Mater Sci 40(3):276–294

    Google Scholar 

  11. Lewis TJ (1994) Nannometric dielectrics. IEEE Trans Dielectr Electr Insul 1(5):812–825

    Article  Google Scholar 

  12. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  Google Scholar 

  13. Singha S, Thomas MJ (2008) Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans Dielectr Electr Insul 15(1):2–11

    Article  Google Scholar 

  14. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42(11):3789–3799. doi:10.1007/s10853-006-0413-0

    Article  Google Scholar 

  15. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15(5):586

    Article  Google Scholar 

  16. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15(1):12–23

    Article  Google Scholar 

  17. Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos A 32(12):1749–1757

    Article  Google Scholar 

  18. Takala M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Kannus K (2008) Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. IEEE Trans Dielectr Electr Insul 15(5):1224–1235

    Article  Google Scholar 

  19. Montanari GC, Fabiani D, Dissado LA (2011) A new conduction phenomenon observed in polyethylene and epoxy resin: ultra-fast soliton conduction. J Polym Sci B. 49(16):1173–1182

    Article  Google Scholar 

  20. Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D 38(2):202

    Article  Google Scholar 

  21. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12(4):669–681

    Article  Google Scholar 

  22. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15(1):106–117

    Article  Google Scholar 

  23. Yuan Z, Yu J, He Z, Wu X, Rao B, Lu S, Jiang N (2014) Improved thermal properties of epoxy composites filled with thermotropic liquid crystalline epoxy grafted aluminum nitride. Fiber Polym 15(12):2581–2590

    Article  Google Scholar 

  24. He Z, Dai W, Yu J, Pan L, Xiao X, Lu S, Jiang N (2014) Enhanced thermal and mechanical properties of polyimide composites by mixing thermotropic liquid crystalline epoxy grafted aluminum nitride. J Polym Res 21(11):1–10

    Article  Google Scholar 

  25. Zhou Y, Yao Y, Chen CY, Moon K, Wang H, Wong CP (2014) The use of polyimide-modified aluminum nitride fillers in AlN & PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation. Sci Rep 4:4779

    Google Scholar 

  26. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  Google Scholar 

  27. Morshuis P, Jeroense M (1997) Space charge measurements on impregnated paper: a review of the PEA method and a discussion of results. IEEE Electr Insul Mag 13(3):26–35

    Article  Google Scholar 

  28. Yewen Z, Baitun Y, Demin T, Yaonan L (1989) Measuring distribution of carrier trap energy state density at interface of dielectric with step pressure wave method. Electr Insul Dielectr Phenom 21(11):303–308

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51437001), and the Innovative Research Groups of China (Grant No. 51321063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijin Liao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Wang, J., Gao, F. et al. Effects of aluminum nitride nanoparticles on the space charge behavior of cellulose paper. J Mater Sci 51, 10701–10713 (2016). https://doi.org/10.1007/s10853-016-0196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0196-x

Keywords

Navigation