Skip to main content
Log in

Design and preparation of easily recycled Ag2WO4@ZnO@Fe3O4 ternary nanocomposites and their highly efficient degradation of antibiotics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Ag2WO4@ZnO@Fe3O4 ternary nanocomposites with high photodegradation activity were synthesized. Compared with Ag2WO4 and ZnO crystals, the ternary nanocomposites could improve the rate of degrading antibiotics to 152.00 and 143.00 %, respectively. Noticeably, the ternary nanocomposites completely degraded the TH within 1.75 h under sunlight irradiation, which paved a new way for its practical application. The matching of energy-band structure between Ag2WO4 and ZnO crystals induced an efficient photogenerated electron transfer from the conduction band of ZnO to the conduction band of Ag2WO4, leading to valid separation and transfer of photogenerated charge carrier, and the subsequent promotion of photocatalytic activity. Furthermore, the introduction of Fe3O4 particle not only realized the recycling of catalyst but also enhanced the utilization rate of visible light of Ag2WO4@ZnO@Fe3O4 ternary nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, Sánchez-Polo M, López-Peñalver JJ (2012) Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chem Eng J 213:88–96

    Article  Google Scholar 

  2. Li XY, Wang LP, Xu DB, Lin DB, Li P, Lin S, Shi WD (2015) Enhanced photocatalytic degrassdation activity for tetracycline under visible light irradiation of Ag/Bi3.84W0.16O6.24 nanooctahedrons. CrystEngComm 17:2421–2428

    Article  Google Scholar 

  3. Xu DF, Cheng B, Cao SW, Yu JG (2015) Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4–GO composite photocatalysts for organic pollutant degradation. Appl Catal B Environ 164:380–388

    Article  Google Scholar 

  4. Jo WN, Clament Sagaya Selvam N (2015) Enhanced visible light-driven photocatalytic performance of ZnO–g–C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J Hazard Mater 299:462–470

    Article  Google Scholar 

  5. Bai YY, Lu Y, Liu JK (2016) An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4–AgBr composite. J Hazard Mater 307:26–35

    Article  Google Scholar 

  6. Zhou MJ, Han DL, Liu XL, Ma CC, Wang HQ, Tang YF, Huo PW, Shi WD, Yan YS, Yang JH (2015) Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/GO photocatalysts synthesized by hydrothermal method. Appl Catal B Environ 172:174–184

    Article  Google Scholar 

  7. Roca RA, Sczancoski JC, Nogueira IC, Fabbro MT, Alves HC, Gracia L, Santos LPS, Sousa CP, Andrés J, Luz GE Jr, Longo E, Cavalcante LS (2015) Facet-dependent photocatalytic and antibacterial properties in α-Ag2WO4 crystals: combining experimental data and theoretical insights. Catal Sci Technol 5(8):4091–4107

    Article  Google Scholar 

  8. Chen HH, Xu YM (2014) Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Appl Surf Sci 319:319–323

    Article  Google Scholar 

  9. Lin ZY, Li JL, Zheng ZQ, Yan JH, Liu P, Wang CX, Yang GW (2015) Electronic reconstruction of α-Ag2WO4 nanorods for the visible-light photocatalysis. ACS Nano 9:7256–7265

    Article  Google Scholar 

  10. Wang QP, Guo XX, Wu WH, Liu SX (2011) Preparation of fine Ag2WO4 antibacterial powders and its application in the sanitary ceramics. Adv Mater Res 284–286:1321–1325

    Google Scholar 

  11. Vignesh K, Kang M (2015) Facile synthesis, characterization and recyclable photocatalytic activity of Ag2WO4@g–C3N4. Mater Sci Eng B 199(5):30–36

    Article  Google Scholar 

  12. Pinatti IM, Nogueira IC, Pereira WDS, Pereira PFS, Gonçalves RF, Varela JA, Longo E, Rosa ILV (2015) Structural and photoluminescence properties of Eu3+ doped α-Ag2WO4 synthesized by the green coprecipitation methodology. Dalton Trans 44:17673

    Article  Google Scholar 

  13. Zhang XY, Wang JD, Liu JK, Yang XH, Lu Y (2014) Constructing of silver tungstate multilevel sphere clusters by controlling energy distribution on crystal surface. CrystEngComm 17:1129–1138

    Article  Google Scholar 

  14. Pereira WD, Andrés J, Gracia L, San-Miguel MA, da Silva EZ, Longo E, Longo VM (2015) Elucidating the real-time Ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights. Phys Chem Chem Phys 17:5352–5359

    Article  Google Scholar 

  15. Longo VM, Foggi CCD, Ferrer MM, Gouveia AF, André RS, Avansi W, Vergani CE, Machado AL, Andrés J, Cavalcante LS, Hernandes AC, Longo E (2014) Potentiated electron transference in α-Ag2WO4 microcrystals with Ag nanofilaments as microbial agent. J Phys Chem A 118:5769–5778

    Google Scholar 

  16. Longo E, Volanti DP, Longo VM, Gracia L, Nogueira IC, Almeida MAP, Pinheiro AN, Ferrer MM, Cavalcante LS, Andrés J (2014) Toward an understanding of the growth of Ag filaments on α-Ag2WO4 and their photoluminescent properties: a combined experimental and theoretical study. J Phys Chem C 118:1229–1239

    Article  Google Scholar 

  17. Zhu Z, Yan Y, Li J (2016) One-step synthesis of flower-like WO3/Bi2WO6 heterojunction with enhanced visible light photocatalytic activity. J Mater Sci 51(4):2112–2120

    Article  Google Scholar 

  18. Li JJ, Yu CY, Zheng CC, Etogo A, Xie YL, Zhong YJ, Hu Y (2015) Facile formation of Ag2WO4/AgX (X = Cl, Br, I) hybrid nanorods with enhanced visible-light-driven photoelectrochemical properties. Mater Res Bull 61:315–320

    Article  Google Scholar 

  19. Liu XH, Hu JL, Li JJ, Hu Y, Shao Y, Yang HJ, Tong GX, Qian HS (2013) Facile synthesis of Ag2WO4/AgCl nanorods for excellent photocatalytic properties. Mater Lett 91:129–132

    Article  Google Scholar 

  20. Yang KS, Dai Y, Huang BB, Whangbo MH (2008) Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem Mater 20:6528–6534

    Article  Google Scholar 

  21. Wang DF, Kako T, Ye JH (2009) New series of solid-solution semiconductors (AgNbO3)1−x (SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. J Phys Chem C 113:3785–3792

    Article  Google Scholar 

  22. Djurisic AB, Chen XY, Leung YH, Ng AMC (2012) ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535

    Article  Google Scholar 

  23. Khadem-Hosseini A, Mirabedini SM, Pazokifard S (2015) Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. J Mater Sci 51(6):8317–8325

    Google Scholar 

  24. Zhang Q, Liu JK, Wang JD, Luo HX, Yi L, Yang XH (2014) Atmospheric self-induction synthesis and enhanced visible light photocatalytic performance of Fe3+ doped Ag-ZnO mesocrystals. Ind Eng Chem Res 53:13236–13246

    Google Scholar 

  25. Deng YJ, Lu Y, Liu JK, Yang XH (2015) Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes. J Alloy Compd 648:438–444

    Article  Google Scholar 

  26. Wang JD, Liu JK, Tong Q, Lu Y, Yang XH (2014) High degradation activity and quantity production of aluminum-doped zinc oxide nanocrystals modified by nitrogen atoms. Ind Eng Chem Res 53:2229–2237

    Article  Google Scholar 

  27. Deng YJ, Lu Y, Liu JK, Yang XH (2015) Production and photoelectric activity of P and Al co-doped ZnO nanomaterials. Eur J Inorg Chem 22:3708–3714

    Article  Google Scholar 

  28. Zhang XY, Liu JK, Wang JD, Yang XH (2015) Mass production, enhanced visible light photocatalytic efficiency, and application of modified ZnO nanocrystals by carbon dots. Ind Eng Chem Res 54(6):1766–1772

    Article  Google Scholar 

  29. Zhang Q, Wan Q, Dai G, Zhou C, Zou B (2011) Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J Phys Chem C 115:2769–2775

    Article  Google Scholar 

  30. Miguel-Sancho N, Bomati-Miguel O, Roca AG, Martinez G, Arruebo M, Santamaria J (2012) Synthesis of magnetic nanocrystals by thermal decomposition in glycol media: effect of process variables and mechanistic study. Ind Eng Chem Res 51(25):8348–8357

    Article  Google Scholar 

  31. Miguel-Sancho N, Bomatí-Miguel O, Colom Glòria et al (2011) Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide Nanoparticles. Chem Mater 23(11):2795–2802

    Article  Google Scholar 

  32. Bian SW, Si L, Lan C (2015) Synthesis of magnetically recyclable Fe3O4 @polydopamine–Pt composites and their application in hydrogenation reactions. J Mater Sci 51(7):1–7

    Google Scholar 

  33. Karunakaran C, Vinayagamoorthy P, Jayabharathi J (2014) Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst. Langmuir 30(49):15031–15039

    Article  Google Scholar 

  34. Liu YS, Wei SH, Wei G (2015) Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium. J Hazard Mater 287:59–68

    Article  Google Scholar 

  35. Shylesh S, Schunemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459

    Article  Google Scholar 

  36. Feng X, Guo H, Patel K, Zhou H, Lou X (2014) High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chem Eng J 244:327–334

    Article  Google Scholar 

  37. Liu H, Wu J, Min JH, Zhang X, Kim YK (2013) Tunable synthesis and multifunctionalities of Fe3O4–ZnO hybrid core-shell nanocrystals. Mater Res Bull 48:551–558

    Article  Google Scholar 

  38. Zhu Z, Lu Z, Wang DD, Tang X, Yan YS, Shi WD, Wang YS, Gao NL, Yao X, Dong HJ (2016) Construction of high-dispersed Ag/Fe3O4/g–C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ 182:115–122

    Article  Google Scholar 

  39. Mueses MA, Machuca-Martinez F, Puma GL (2013) Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors. Chem Eng J 215(2):937–947

    Article  Google Scholar 

  40. Liu Q, Guo YR, Chen ZH, Zhang ZG, Fang XM (2016) Constructing a novel ternary Fe(III)/graphene/g–C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect activity via interfacial charge transfer effect. Appl Catal B Environ 183:231–241

    Article  Google Scholar 

  41. Di J, Xia JX, Ge YP, Li HP, Ji HY, Xu H, Zhang Q, Li HM, Li ML (2015) Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl Catal B Environ 168:51–61

    Article  Google Scholar 

  42. Wang FR, Su YY, Liu JK et al (2016) Enhanced photoelectric properties by the coordinating role of doping and modification. Phys Chem Chem Phys 18:4850–4859

    Article  Google Scholar 

  43. Shi H, Li ZS, Kou JH, Ye JH, Zou ZG (2010) Facile synthesis of single-crystalline Ag2V4O11 nanotube material as a novel visible-light-sensitive photocatalyst. J Phys Chem C 115(1):145–151

    Article  Google Scholar 

  44. Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M (2015) Facile photochemical synthesis of Au/Pt/g–C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637

    Article  Google Scholar 

  45. Wang D, Xu Z, Luo Q et al (2015) Preparation and visible-light photocatalytic performances of g–C3N4 surface hybridized with a small amount of CdS nanoparticles. J Mater Sci 51(2):893–902

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 21341007), Fundamental Research Funds for the Central Universities (Grant 222201313005), and State Key Laboratory of Pollution Control and Resource Reuse Foundation (Grant 13019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Ku Liu or Xiao-Hong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Lu, Y., Liu, JK. et al. Design and preparation of easily recycled Ag2WO4@ZnO@Fe3O4 ternary nanocomposites and their highly efficient degradation of antibiotics. J Mater Sci 51, 7793–7802 (2016). https://doi.org/10.1007/s10853-016-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0063-9

Keywords

Navigation