Skip to main content

Advertisement

Log in

Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of novel magnetic branched polyethylenimine nanogels (Fe3O4/bPEI) was prepared via the combination of crosslinking branched polyethylenimine to form a nanogel and in-situ generation of Fe3O4 on its surface. Morphologies and magnetic properties of the Fe3O4/bPEI nanocomposites could be easily controlled by regulating the ratio between branched polyethylenimine nanogel and Fe3O4 precursor. The nanocomposites could be applied as efficient and selective dye adsorbents for the removal of Congo red under different pH values or in the presence of methylene blue. Furthermore, it could also be applied as catalyst support for the loading of palladium to afford a novel Pd-Fe3O4/bPEI nanocomposite, which exhibited good catalytic activity in the reduction of nitrophenols using NaBH4 as the reducing agent. Particularly, this nanocomposite could be easily separated by an external magnetic field and recycled ten times without appreciable loss of its initial catalytic activity. The synergistic integration of nanogel and magnetic Fe3O4 nanoparticles makes Fe3O4/bPEI to be a versatile platform for multiple applications.

Graphical Abstract

Magnetically recyclable polyethylenimine nanogels (Fe3O4/bPEI), prepared with in-situ generated Fe3O4, can serve as excellent dye adsorbent and catalyst support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ryu JH, Jiwpanich S, Chacko R et al (2010) Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities. J Am Chem Soc 132:8246–8247

    Article  Google Scholar 

  2. Yuan Z, Wang Y, Chen D (2014) Preparation and characterization of thermo-, pH-, and magnetic-field-responsive organic/inorganic hybrid microgels based on poly (ethylene glycol). J Mater Sci 49:3287–3296. doi:10.1007/s10853-014-8037-2

    Article  Google Scholar 

  3. Zhang X, Malhotra S, Molina M et al (2015) Micro-and nanogels with labile crosslinks–from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973

    Article  Google Scholar 

  4. Xiong Y, Wang H, Wang R et al (2010) A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chem Commun 46:3399–3401

    Article  Google Scholar 

  5. Moore BL, Moatsou D, Lu A et al (2014) Studying the activity of the MacMillan catalyst embedded within hydrophobic cross-linked polymeric nanostructures. Polym Chem 10:3487–3494

    Article  Google Scholar 

  6. Li B, Jiang X, Yin J (2012) Multi-responsive microgel of hyperbranched poly(ether amine)(hPEA-mGel) for the selective adsorption and separation of hydrophilic fluorescein dyes. J Mater Chem 22:17976–17983

    Article  Google Scholar 

  7. Bhardwaj P, Singh V, Mandal UK et al (2010) Polyacrylamide and poly (acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica composite nanogels through in situ microemulsion polymerisation. J Mater Sci 45:1008–1016. doi:10.1007/s10853-009-4032-4

    Article  Google Scholar 

  8. Kaewsaneha C, Tangboriboonrat P, Polpanich D et al (2013) A. Janus colloidal particles: preparation, properties, and biomedical applications. ACS Appl Mater Interfaces 5:1857–1869

    Article  Google Scholar 

  9. Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10:366–376

    Google Scholar 

  10. Wu W, Mitra N, Yan EC et al (2010) Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4:4831–4839

    Article  Google Scholar 

  11. Smith MH, Lyon LA (2011) Multifunctional nanogels for siRNA delivery. Acc Chem Res 45:985–993

    Article  Google Scholar 

  12. Argentiere S, Blasi L, Morello G et al (2011) A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. J Phys Chem C 115:16347–16353

    Article  Google Scholar 

  13. Lu A, Moatsou D, Longbottom DA et al (2013) Tuning the catalytic activity of l-proline functionalized hydrophobic nanogel particles in water. Chem Sci 4:965–969

    Article  Google Scholar 

  14. Bonomi P, Servant A, Resmini M (2012) Modulation of imprinting efficiency in nanogels with catalytic activity in the Kemp elimination. J Mol Recognit 25:352–360

    Article  Google Scholar 

  15. Oishi M, Miyagawa N, Sakura T et al (2007) pH-responsive PEGylated nanogel containing platinum nanoparticles: application to on–off regulation of catalytic activity for reactive oxygen species. React Funct Polym 67:662–668

    Article  Google Scholar 

  16. Pourjavadi A, Nazari-Chamazkoti M, Hosseini SH (2015) Polymeric ionic liquid nanogel-anchored tungstate anions: a robust catalytic system for oxidation of sulfides to sulfoxides. New J Chem 39:1348–1354

    Article  Google Scholar 

  17. Sui ZY, Cui Y, Zhu JH et al (2013) Preparation of three-dimensional graphene oxide–polyethylenimine porous materials as dye and gas adsorbents. ACS Appl Mater Interfaces 5:9172–9179

    Article  Google Scholar 

  18. Ma Y, Liu WJ, Zhang N et al (2014) Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technol 169:403–408

    Article  Google Scholar 

  19. Heydari-Gorji A, Sayari A (2012) Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind Eng Chem Res 51:6887–6894

    Article  Google Scholar 

  20. Wang ML, Jiang TT, Lu Y et al (2013) Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. J Mater Chem A 1:5923–5933

    Article  Google Scholar 

  21. Zhang X, Zhang X, Yang B et al (2014) Biocompatible fluorescent organic nanoparticles derived from glucose and polyethylenimine. Colloid Surface B 123:747–752

    Article  Google Scholar 

  22. Lupitskyy R, Minko S (2010) Robust synthesis of nanogel particles by an aggregation-crosslinking method. Soft Matter 6:4396–4402

    Article  Google Scholar 

  23. Sun X, Yang L, Xing H et al (2013) Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J 234:338–345

    Article  Google Scholar 

  24. Fan Y, Liu HJ, Zhang Y et al (2015) Adsorption of anionic MO or cationic MB from MO/MB mixture using polyacrylonitrile fiber hydrothermally treated with hyperbranched polyethylenimine. J Hazard Mater 283:321–328

    Article  Google Scholar 

  25. Lei Y, Chen F, Luo Y et al (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245. doi:10.1007/s10853-014-8118-2

    Article  Google Scholar 

  26. Xie Y, Yan B, Xu H et al (2014) Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core–shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Interfaces 6:8845–8852

    Article  Google Scholar 

  27. Mu B, Wang A (2015) One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J Mater Chem A 3:281–289

    Article  Google Scholar 

  28. Mohammadi A, Barikani M, Barmar M (2013) Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48:7493–7502. doi:10.1007/s10853-013-7563-7

    Article  Google Scholar 

  29. Xie W, Wang J (2014) Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly(styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuel 28:2624–2631

    Article  Google Scholar 

  30. Cai Y, Jiang JS, Zheng B et al (2013) Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J Appl Polym Sci 127:49–56

    Article  Google Scholar 

  31. Cui Q, Zhu S, Yan Y et al (2015) Superparamagnetic Fe3O4/poly(N-isopropyl acrylamide) nanocomposites synthesized in inverse miniemulsions: magnetic and particle properties. J Nanosci Nanotechnol 15:4608–4618

    Article  Google Scholar 

  32. Zhao L, Liu H, Wang F et al (2014) Design of yolk–shell Fe3O4@PMAA composite microspheres for adsorption of metal ions and pH-controlled drug delivery. J Mater Chem A 2:7065–7074

    Article  Google Scholar 

  33. Liu B, Zhang W, Yang F et al (2011) Facile method for synthesis of Fe3O4@polymer microspheres and their application as magnetic support for loading metal nanoparticles. J Phys Chem C 115:15875–15884

    Article  Google Scholar 

  34. Guo W, Wang Q, Wang G et al (2013) Facile hydrogen-bond-assisted polymerization and immobilization method to synthesize hierarchical Fe3O4@poly(4-vinylpyridine-co-divinylbenzene)@Au nanostructures and their catalytic applications. Chem Asian J 8:1160–1167

    Article  Google Scholar 

  35. Xuan S, Wang YXJ, Leung KCF et al (2008) Synthesis of Fe3O4@polyaniline core/shell microspheres with well-defined blackberry-like morphology. J Phys Chem C 112:18804–18809

    Article  Google Scholar 

  36. Liu R, Guo Y, Odusote G et al (2013) Core–shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces 5:9167–9171

    Article  Google Scholar 

  37. Tian Q, Wang Q, Yao KX et al (2014) Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10:1063–1068

    Article  Google Scholar 

  38. Zhao M, Deng K, He L et al (2014) Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 136:1738–1741

    Article  Google Scholar 

  39. Xue Y, Chen H, Yu D et al (2011) Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47:11689–11691

    Article  Google Scholar 

  40. Yoon T, Chae C, Sun YK et al (2011) Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J Mater Chem 21:17325–17330

    Article  Google Scholar 

  41. Karami B, Hoseini SJ, Eskandari K et al (2012) Synthesis of xanthene derivatives by employing Fe3O4 nanoparticles as an effective and magnetically recoverable catalyst in water. Catal Sci Technol 2:331–338

    Article  Google Scholar 

  42. Beyth N, Yudovin-Farber I, Bahir R et al (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002

    Article  Google Scholar 

  43. Santoyo Salazar J, Perez L, de Abril O et al (2011) Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 23:1379–1386

    Article  Google Scholar 

  44. Lee H, Lee E, Kim DK et al (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389

    Article  Google Scholar 

  45. Liang J, Ma H, Luo W et al (2013) Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process. Mater Chem Phys 139:383–388

    Article  Google Scholar 

  46. Zhang X, Jiang L (2011) Fabrication of novel rattle-type magnetic mesoporous carbon microspheres for removal of microcystins. J Mater Chem 21:10653–10657

    Article  Google Scholar 

  47. Patil K, Pawar R, Talap P (2000) Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys Chem Chem Phys 2:4313–4317

    Article  Google Scholar 

  48. Ribeiro SM, Serra AC, Gonsalves ADAR (2011) Silica grafted polyethylenimine as heterogeneous catalyst for condensation reactions. Appl Catal A 399:126–133

    Article  Google Scholar 

  49. Long W, Brunelli NA, Didas SA et al (2013) Aminopolymer–silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal 3:1700–1708

    Article  Google Scholar 

  50. Yang J, Tian C, Wang L (2011) An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem 21:3384–3390

    Article  Google Scholar 

  51. Wen X, Li G, Chen Q et al (2014) Organic-soluble palladium nanoparticles costabilized by hyperbranched polymer and dispersants as highly efficient and reusable catalysts in biphasic solution. Ind Eng Chem Res 53:11646–11652

    Article  Google Scholar 

  52. Rashid M, Mandal TK (2008) Templateless synthesis of polygonal gold nanoparticles: an unsupported and reusable catalyst with superior activity. Adv Funct Mater 18:2261–2271

    Article  Google Scholar 

  53. Li H, Gao S, Zheng Z et al (2011) Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte-gold nanoparticle films on Fe3O4-silica core-shell microspheres. Catal Sci Technol 1:1194–1201

    Article  Google Scholar 

  54. Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM − and PPI − metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  Google Scholar 

  55. Mei Y, Lu Y, Polzer F et al (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069

    Article  Google Scholar 

  56. Chang Y, Chen D (2009) Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater 165:664–669

    Article  Google Scholar 

  57. Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A 298:7–11

    Article  Google Scholar 

  58. Lu X, Bian X, Nie G et al (2012) Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: a new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. J Mater Chem 22:12723–12730

    Article  Google Scholar 

  59. Liu Y, Fan Y, Yuan Y et al (2012) Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol. J Mater Chem 22:21173–21182

    Article  Google Scholar 

  60. El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J Chem 37:2399–2407

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Gang Ma for his kind help. Financial support by the National Natural Science Foundation of China (21376060), the Natural Science Foundation of Hebei Province (B2014201024), and the Youth Foundation of Hebei Educational Committee (QN2014069) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Bai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2015_9627_MOESM1_ESM.docx

TEM image and photograph of magnetic separation of the comparative sample of Fe3O4(2)/bPEI; TEM image and photograph of magnetic separation of Fe3O4(2)-bPEI; FTIR analysis of bPEI-HCl nanogel; TEM image and the size distribution of pure Fe3O4 (inset); UV–vis spectra of the mixture solution of dyes before and after adsorption; TEM, STEM, and HAADF-STEM images of Pd-Fe3O4(2)/bPEI with elemental mappings; XRD pattern of Pd-Fe3O4(2)/bPEI; photograph of the solution of 4-NP before and after reduction. Supplementary material 1 (DOCX 8831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Qiao, X., Han, X. et al. Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51, 3170–3181 (2016). https://doi.org/10.1007/s10853-015-9627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9627-3

Keywords

Navigation