Skip to main content
Log in

Enhancement of gas–solid photocatalytic activity of nanocrystalline TiO2 by SiO2 opal photonic crystal

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of nc-TiO2/SiO2 opal composite photocatalytic membranes were fabricated through coating a nanocrystal TiO2 (nc-TiO2) layer onto a SiO2 opal photonic crystal layer and used as catalysts for photodegradation of gaseous acetaldehyde under 380 nm monochromatic light and white light irradiation. The photonic band gap (PBG) of the SiO2 photonic crystal was designed at the vicinity of the electronic band gap of TiO2 and tuned by the size of SiO2 microspheres constructing the SiO2 opals. It was found that the nc-TiO2/SiO2 opal composite membrane, with the PBG of the SiO2 photonic crystal overlapping with the absorption edge of TiO2, exhibited the highest photocatalytic activity, which was 1.5 times that of a control photocatalytic membrane—the membrane of nc-TiO2 coated on a disordered porous SiO2 film. The farther the photonic PBG is away from the absorption edge of TiO2, the lower the photocatalytic activity of the composite membranes; when the nc-TiO2/SiO2 opal composite membrane catalyst with PBG was completely outside of the absorption edge of TiO2, the photocatalytic enhancement was not found. The photocatalytic enhancement is attributed to the enhanced light harvest of TiO2 resulting from the absorption of reflected light at PBG of photonic crystal and attributed to the light localization of photonic crystal inside the nc-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B-Environ 125:331–349. doi:10.1016/j.apcatb.2012.05.036

    Article  Google Scholar 

  2. Cho Y, Choi W, Lee CH, Hyeon T, Lee HI (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35:966–970. doi:10.1021/es001245e

    Article  Google Scholar 

  3. Cheng CW, Karuturi SK, Liu LJ et al (2012) Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 8:37–42. doi:10.1002/smll.201101660

    Article  Google Scholar 

  4. Soejima T, Yagyu H, Ito S (2011) One-pot synthesis and photocatalytic activity of Fe-doped TiO2 films with anatase–rutile nanojunction prepared by plasma electrolytic oxidation. J Mater Sci 46:5378–5384. doi:10.1007/s10853-011-5476-x

    Article  Google Scholar 

  5. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B-Environ 140–141:559–587. doi:10.1007/s10853-011-5476-x

    Article  Google Scholar 

  6. Chen QH, Liu HL, Xin YJ, Cheng XW (2014) Coupling immobilized TiO2 nanobelts and Au nanoparticles for enhanced photocatalytic and photoelectrocatalytic activity and mechanism insights. Chem Eng J 241:145–154. doi:10.1016/j.cej.2013.12.028

    Article  Google Scholar 

  7. Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R (2005) Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells. Chem Commun 15:2011–2013. doi:10.1039/b418658n

    Article  Google Scholar 

  8. Hall AS, Faryad M, Barber GD et al (2013) Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. ACS Nano 7:4995–5007

    Article  Google Scholar 

  9. Chen JIL, von Freymann G, Choi SY, Kitaev V, Ozin GA (2006) Amplified photochemistry with slow photons. Adv Mater 18:1915–1919. doi:10.1002/adma.200600588

    Article  Google Scholar 

  10. Dinh CT, Yen H, Kleitz K, Do TO (2014) Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. Angew Chem Int Ed 53:6618–6623. doi:10.1002/anie.201400966

    Article  Google Scholar 

  11. Wu M, Liu J, Jin J et al (2014) Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Appl Catal B-Environ 150–151:411–420. doi:10.1016/j.apcatb.2013.12.037

    Article  Google Scholar 

  12. Chen JI, Ozin GA (2009) Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects. J Mater Chem 19:2675–2678. doi:10.1039/b900965e

    Article  Google Scholar 

  13. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114:22181–22189. doi:10.1021/jp107405u

    Article  Google Scholar 

  14. Jiao J, Wei Y, Zhao Z et al (2014) Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation. Ind Eng Chem Res 53:17345–17354

    Article  Google Scholar 

  15. Zhang X, Liu Y, Lee ST, Yang S, Kang Z (2014) Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci 7:1409–1419. doi:10.1039/c3ee43278e

    Article  Google Scholar 

  16. Chen Z, Fang L, Dong W, Zheng F, Shen M, Wang J (2014) Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J Mater Chem A 2:824–832. doi:10.1039/c3ta13985a

    Article  Google Scholar 

  17. Xiao JY, Huang QL, Xu J et al (2014) CdS/CdSe co-sensitized solar cells based on a new SnO2 photoanode with a three-dimensionally interconnected ordered porous structure. J Phys Chem C 118:4007–4015. doi:10.1021/jp411922e

    Article  Google Scholar 

  18. Huang Z, Fang L, Dong W, Liu Y, Kang Z (2014) Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity. J Nanosci Nanotechnol 14:4156–4163. doi:10.1166/jnn.2014.8276

    Article  Google Scholar 

  19. Xu J, Yang B, Wu M, Fu Z, Lv Y, Zhao Y (2010) Novel N–F-codoped TiO2 inverse opal with a hierarchical meso-/macroporous structure: synthesis, characterization, and photocatalysis. J Phys Chem C 114:15251–15259. doi:10.1021/jp101168y

    Article  Google Scholar 

  20. Chen JIL, Loso E, Ebrahim N, Ozin GA (2008) Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. J Am Chem Soc 130:5420–5421. doi:10.1021/ja800288f

    Article  Google Scholar 

  21. Sordello F, Minero C (2015) Photocatalytic hydrogen production on Pt-loaded TiO2 inverse opals. Appl Catal B-Environ 163:452–458. doi:10.1016/j.apcatb.2014.08.028

    Article  Google Scholar 

  22. Yuan LF, Yu Z, Li CH et al (2014) PANI-sensitized N-TiO2 inverse opals with enhanced photoelectrochemical performance and photocatalytic activity. J Electrochem Soc 161:H332–H336. doi:10.1149/2.069405jes

    Article  Google Scholar 

  23. Liao G, Chen S, Quan X, Chen H, Zhang Y (2010) Photonic crystal coupled TiO2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ Sci Technol 44:3481–3485. doi:10.1021/es903833f

    Article  Google Scholar 

  24. Mihi A, Míguez H (2005) Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J Phys Chem B 109:15968–15976

    Article  Google Scholar 

  25. Mihi A, Calvo ME, Anta JA, Míguez H (2008) Spectral response of opal-based dye-sensitized solar cells. J Phys Chem C 112:13–17. doi:10.1021/jp7105633

    Article  Google Scholar 

  26. Heiniger LP, O’Brien PG, Soheilnia N et al (2013) See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics. Adv Mater 25:5734–5741. doi:10.1002/adma.201302113

    Article  Google Scholar 

  27. Chen SL, Wang AJ, Hu CT, Dai C, Benziger JB (2012) Enhanced photocatalytic performance of nanocrystalline TiO2 membrane by both slow photons and stop-band reflection of photonic crystals. AIChE J 58:568–572. doi:10.1002/aic.12712

    Article  Google Scholar 

  28. Chen SL, Wang AJ, Dai C, Benziger JB, Liu XC (2014) The effect of photonic band gap on the photo-catalytic activity of nc-TiO2/SnO2 photonic crystal composite membranes. Chem Eng J 249:48–53. doi:10.1016/j.cej.2014.03.075

    Article  Google Scholar 

  29. Chen SL (1998) Preparation of monosize silica spheres and their crystalline stack. Colloids Surf A 142:59–63. doi:10.1016/S0927-7757(98)00276-3

    Article  Google Scholar 

  30. Wang AJ, Chen SL, Dong P (2009) Rapid fabrication of a large-area 3D silica colloidal crystal thin film by a room temperature floating self-assembly method. Mater Lett 63:1586–1589. doi:10.1016/j.matlet.2009.04.024

    Article  Google Scholar 

  31. Wang AJ, Chen SL, Dong P (2011) Fabrication of colloidal crystal heterostructures by a room temperature floating self-assembly method. Mater Chem Phys 128:6–9. doi:10.1016/j.matchemphys.2011.02.051

    Article  Google Scholar 

  32. Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %. Thin Solid Films 516:4613–4619. doi:10.1016/j.tsf.2007.05.090

    Article  Google Scholar 

  33. Tamiolakis I, Lykakis IN, Armatas GS (2015) Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: selective aerobic oxidation of benzyl alcohols. Catal Today 250:180–186. doi:10.1016/j.cattod.2014.03.047

    Article  Google Scholar 

  34. Lin HJ, Yang TS, Hsi CS, Wang MC, Lee KC (2014) Optical and photocatalytic properties of Fe3+-doped TiO2 thin films prepared by a sol-gel spin coating. Ceram Int 40:10633–10640. doi:10.1016/j.ceramint.2014.03.046

    Article  Google Scholar 

  35. Gu ZZ, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14:760–765. doi:10.1021/cm0108435

    Article  Google Scholar 

  36. Chen JIL, Gv Freymann, Kitaev V, Ozin GA (2007) Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. J Am Chem Soc 129:1196–1202. doi:10.1021/ja066102s

    Article  Google Scholar 

  37. Shang J, Yao W, Zhu Y, Wu N (2004) Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film. Appl Catal A-Gen 257:25–32. doi:10.1016/j.apcata.2003.07.001

    Article  Google Scholar 

  38. Lozano G, Colodrero S, Caulier O, Calvo ME, Hn Míguez (2010) Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells. J Phys Chem C 114:3681–3687. doi:10.1021/jp9096315

    Article  Google Scholar 

  39. Lu Y, Yu H, Chen S, Quan X, Zhao H (2012) Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ Sci Technol 46:1724–1730. doi:10.1021/es202669y

    Article  Google Scholar 

  40. Kubo S, Gu ZZ, Takahashi K, Ohko Y, Sato O, Fujishima A (2002) Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. J Am Chem Soc 124:10950–10951. doi:10.1021/ja026482r

    Article  Google Scholar 

  41. Bertone JF, Jiang P, Hwang KS, Mittleman DM, Colvin VL (1999) Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys Rev Lett 83:300. doi:10.1103/PhysRevLett.83.300

    Article  Google Scholar 

  42. Liu JT, Wang TB, Li XJ, Liu NH (2014) Enhanced absorption of monolayer MoS2 with resonant back reflector. J Appl Phys 115:193511. doi:10.1063/1.4878700

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Nature Science Foundation of China (Grant No. 21376260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Li Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wang, Y., Chen, SL. et al. Enhancement of gas–solid photocatalytic activity of nanocrystalline TiO2 by SiO2 opal photonic crystal. J Mater Sci 51, 2079–2089 (2016). https://doi.org/10.1007/s10853-015-9518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9518-7

Keywords

Navigation