Skip to main content
Log in

Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gelatin, because of its biodegradability and ecofriendly nature, has been the best choice for controlled release applications. Montmorillonite (MMT) clay shows a very important role in controlling drug delivery. Hence, an attempt was made in this work to prepare gelatin–MMT nanoparticles by desolvation method using acetone as precipitating agent, glutaraldehyde (GA) as crosslinking agent, and water as reaction media for controlled delivery of isoniazid, a drug for tuberculosis. Characterization of the MMT and isoniazid-loaded gelatin–MMT nanoparticles was carried out using Fourier transform infrared spectroscopy, X-ray diffraction study, scanning electron microscopy study, and transmission electron microscopy study. The effect of MMT on gelatin nanoparticles was evaluated in terms of water uptake studies, and subsequently to the release of isoniazid drug in buffer solution at pH 1.2 (gastric pH) and pH 7.4 (intestinal pH). Swelling experiment indicated that the gelatin nanoparticles were very sensitive to the pH environment. The release profile of drug was studied by a UV–Visible spectrophotometer. Cytotoxicity study revealed that MMT-containing nanoparticles showed less cytotoxicity than MMT-free nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  Google Scholar 

  2. Riva R, Ragelle H, Rieux AD, Duhem N, Jerome C, Preat V (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polymer Sci 244:19–44

    Article  Google Scholar 

  3. Lee EJ, Khan SA, Park JK, Lim KH (2012) Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 35:297–307

    Article  Google Scholar 

  4. Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, Bhatt AS, Barvaliya YK, Dave GS, Kothari RK (2014) Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloid Surf B 122:175–183

    Article  Google Scholar 

  5. Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7:4926–4934

    Google Scholar 

  6. Bajpai AK, Choubey J (2006) Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 17:345–358

    Article  Google Scholar 

  7. Kaintura R, Sharma P, Singh S, Rawat K, Solanki PR (2015) Gelatin nanoparticles as a drug delivery system for proteins. J Nanomed Res 2:00018. doi:10.15406/jnmr.2015.02.00018

    Google Scholar 

  8. Foox M, Zilberman M (2015) Drug delivery from gelatin based systems. Expert Opin Drug Deliv 5:1–17

    Article  Google Scholar 

  9. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomed J 18:34–40

    Google Scholar 

  10. Saraogi GK, Sharma B, Joshi B, Gupta P, Gupta UD, Jain NK, Agrawal GP (2011) Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target 19:219–227

    Article  Google Scholar 

  11. Das PR, Nanda RM, Behara A, Nayak PL (2011) Gelatin blended with nanoparticle cloisite30B (MMT) for control drug delivery of anticancer drug paclitaxel. Int Res J Biochem Bioinform 1:35–42

    Google Scholar 

  12. Suresh R, Borkar SN, Sawant VA, Shende VS, Dimble SK (2010) Nanoclay drug delivery system. Int J Pharm Sci Nanotechnol 3:901–905

    Google Scholar 

  13. Zheng J, Shan J, Fan Z, Yao K (2011) Preparation and properties of gelatin-chitosan/montmorillonite drug-loaded microspheres. J Wuhan Univ Technol-Mater Sci Ed 26:628–633

    Article  Google Scholar 

  14. Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV (2009) Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm 374:53–57

    Article  Google Scholar 

  15. Haywood A, Mangan M, Grant G, Glass BD (2005) Extemporaneous isoniazid mixture: stability implications. J Pharm Pract Res 35:181–182

    Article  Google Scholar 

  16. Ramachandran R, Shanmughavel P (2010) Preparation and characterization of biopolymeric nanoparticles used in drug delivery. Indian J Biochem Biophys 47:56–59

    Google Scholar 

  17. Xu H, Shen L, Xu L, Yang Y (2015) Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: in vivo and drug loading study. Biomed Microdevices 17:8. doi:10.1007/s10544-014-9926-5

    Article  Google Scholar 

  18. Zheng JP, Luan L, Wang HY, Xi LF, Yao KD (2007) Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36:297–301

    Article  Google Scholar 

  19. Nayak UY, Gopal S, Mutalik S, Ranjith AK, Reddy MS, Gupta P, Udupa N (2009) Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of zidovudine. J Microencapsul 26:214–222

    Article  Google Scholar 

  20. Iman M, Bania KK, Maji TK (2013) Green jute-based cross-linked soy flour nanocomposites reinforced with cellulose whiskers and nanoclay. Ind Eng Chem Res 52:6969–6983

    Article  Google Scholar 

  21. Whipple EB, Ruta M (1974) Structure of aqueous glutaraldehyde. J Org Chem 39:1666–1668

    Article  Google Scholar 

  22. Devi N, Maji TK (2010) Microencapsulation of isoniazid in genipin-crosslinked gelatin-A–k-carrageenan polyelectrolyte complex. Drug Dev Ind Pharm 36:56–63

    Article  Google Scholar 

  23. Selvaraj S, Saravanakumar N, Karthikeyan J, Deborah Evangeline D, Lathamary Rajendran NN (2010) Acyclovir loaded chitosan nanoparticles for ocular delivery. Der Pharmacia Lettre 2:420–431

    Google Scholar 

  24. Devi N, Maji TK (2009) Preparation and evaluation of gelatin/sodium carboxymethyl cellulose polyelectrolyte complex microparticles for controlled delivery of isoniazid. AAPS PharmSciTech 10:1412–1419

    Article  Google Scholar 

  25. Cassano R, Trombino S, Ferrarelli T, Mauro MV, Giraldi C, Manconi M, Fadda AM, Picci N (2012) Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment. J Biomed Mater Res A 100:536–542

    Article  Google Scholar 

  26. Ahuja A, Khar RK, Ali J (1997) Mucoadhesive drug delivery systems. Drug Dev Ind Pharm 23:489–515

    Article  Google Scholar 

  27. Park K, Robinson JR (1984) Bioadhesive polymers as platforms for oral controlled drug delivery: method to study bioadhesion. Int J Pharm 19:107–127

    Article  Google Scholar 

  28. Hussain A, Saikia V, Ramteke A (2012) Nitric oxide and modulatory effects of the root extracts of phlogacanthus tubiflorus against oxidative stress induced by hydrogen peroxide. Free Radic Antioxd 2:8–11

    Article  Google Scholar 

  29. Gomez-Lechon MJ, Iborra FJ, Azorin I, Guerri C, Renau-Piqueras J (1992) Cryopreservation of rat astrocytes from primary cultures. Methods Cell Sci 14:73–77

    Google Scholar 

  30. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  Google Scholar 

  31. Daly LE, Bourke GJ (1985) Interpretation and uses of medical statistics, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  32. Hua S, Yang H, Wang A (2010) A pH-sensitive nanocomposite microsphere based on chitosan and montmorillonite with in vitro reduction of the burst release effect. Drug Dev Ind Pharm 36:1106–1114

    Article  Google Scholar 

  33. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24:2198–2206

    Article  Google Scholar 

  34. Fukuoka E, Makita M, Yamamura S (1993) Pattern fitting procedure for the characterization of crystals and/or crystallites in tablets. Chem Pharm Bull 41:2166–2171

    Article  Google Scholar 

  35. Bahari A, Asgharzadeh M, Najafikhah M (2011) Sodium nanoparticle effects on montmorillinite structure. Afr J Appl Chem 5:429–435

    Google Scholar 

  36. Lu WH, Zhao GJ, Xue ZH (2006) Preparation and characterization of wood/montmorillonite nanocomposites. For Stud China 8:35–40

    Article  Google Scholar 

  37. Ping LI, Jun-ping Z, Kang-de Y (2001) Study on intercalation mechanism of gelatin/MMT nanocomposite. Trans Tianjin Univ 7:294–296

    Google Scholar 

  38. Angadi SC, Manjeshwar LS, Aminabhavi TM (2010) Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 47:171–179

    Article  Google Scholar 

  39. Devi N, Maji TK (2011) Study of complex coacervation of gelatin A with sodium carboxymethyl cellulose: microencapsulation of neem (azadirachta indica A. juss.) seed oil (NSO). Int J Polymer Mater 60:1091–1105

    Article  Google Scholar 

  40. Su X, Zhang G, Xu K, Wang J, Song C, Wang P (2008) The effect of MMT/modified MMT on the structure and performance of the superabsorbent composite. Polymer Bull 60:69–78

    Article  Google Scholar 

  41. Deka BK, Maji TK (2010) Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargmites karka nanocomposite. Compos Sci Technol 70:1755–1761

    Article  Google Scholar 

  42. Seema, Datta M (2013) MMT-PLGA nanocomposites as an oral and controlled release carrier for 5-fluorouracil: a novel approach. Int J Pharm Pharm Sci 5:332–341

    Google Scholar 

  43. Wang X, Du Y, Luo J (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:1–7

    Google Scholar 

  44. Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr Polym 89:290–297

    Article  Google Scholar 

  45. Dong Y, Feng S (2005) Poly (d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:6068–6076

    Article  Google Scholar 

Download references

Acknowledgements

The author M. Sarmah is highly acknowledged to University Grant Commission (UGC) for financial support as a form of institutional fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Maji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, M., Banik, N., Hussain, A. et al. Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications. J Mater Sci 50, 7303–7313 (2015). https://doi.org/10.1007/s10853-015-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9287-3

Keywords

Navigation