Skip to main content
Log in

Hybrid disordered blends formed from fullerene porous layers and zinc oxide grown by atomic layer deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermally evaporated fullerene C60 porous films served as templates for a hybrid (molecular-inorganic) disordered blend formation. C60 films were covered with zinc oxide (ZnO) grown by atomic layer deposition. ZnO filled every pore in the C60 layer which led to the formation of C60–ZnO films with separate and distinguishable phases of C60 and ZnO constituents. Morphological, structural, optical, and electrical properties of the so-obtained films were investigated. Deposition of ZnO polycrystalline films on C60 porous layers resulted in the formation of ZnO with additional structural defects, compared to the films grown on planar substrates, which affected the electrical transport in the ZnO–C60 layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitzi DB, Chondroudis K, Kagan CR (2001) Organic–inorganic electronics. IBM J Res Dev 45:29

    Article  Google Scholar 

  2. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945

    Article  Google Scholar 

  3. Lee BH, Yoon B, Abdulagatov AI, Hall RA, George SM (2013) Growth and properties of hybrid organic-inorganic metalcone films using molecular layer deposition techniques. Adv Funct Mater 23:532

    Article  Google Scholar 

  4. Kim TW, Yang Y, Li F, Kwan WL (2012) Organic heterostructures in organic field-effect transistors. NPG Asia Mater 4:e18

    Article  Google Scholar 

  5. Yu YY, Chen ChY, Chen WCh (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44:593

    Article  Google Scholar 

  6. Łuka G, Krajewski T, Szczerbakow A, Łusakowska E, Kopalko K, Guziewicz E, Wachnicki Ł, Szczepanik A, Godlewski M, Fidelus JD (2008) Hybrid organic/ZnO p-n junctions with n-type ZnO grown by atomic layer deposition. Acta Phys Pol A 114:1229

    Google Scholar 

  7. Lechmann MC, Koll D, Kessler D, Theato P, Tremel W, Gutmann JS (2010) Comparison of hybrid blends for solar cell application. Energies 3:301

    Article  Google Scholar 

  8. Itaka K, Yamashiro M, Yamaguchi J, Haemori M, Yaginuma S, Matsumoto Y, Kondo M, Koinuma H (2006) High-mobility C60 field-effect transistors fabricated on molecular-wetting controlled substrates. Adv Mater 18:1713

    Article  Google Scholar 

  9. Hinderhofer A, Gerlach A, Broch K, Hosokai T, Yonezawa K, Kato K, Kera S, Ueno N, Schreiber F (2013) Geometric and electronic structure of templated C60 on diindenoperylene thin films. J Phys Chem C 117:1053

    Article  Google Scholar 

  10. Niinistö J, Putkonen M, Niinistö L, Song F, Williams P, Heys PN, Odedra R (2007) Atomic layer deposition of HfO2 thin films exploiting novel cyclopentadienyl precursors at high temperatures. Chem Mater 19:3319

    Article  Google Scholar 

  11. Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J (2012) A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat Nanotechnol 7:798

    Article  Google Scholar 

  12. Yonehara H, Pac Ch (1992) Dark and photoconductivity behavior of C60 thin films sandwiched with metal electrodes. Appl Phys Lett 61:575

    Article  Google Scholar 

  13. Reemts J, Kittel A (2007) Persistent photoconductivity in highly porous ZnO films. J Appl Phys 101:013709

    Article  Google Scholar 

  14. Luth H (2001) Solid surfaces, interfaces and thin films. Springer, Heidelberg

    Google Scholar 

  15. Singh ThB, Sariciftci NS, Yang H, Yang L, Plochberger B, Sitter H (2007) Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility. Appl Phys Lett 90:213512

    Article  Google Scholar 

  16. Yim S, Jones TS (2009) Growth dynamics of C60 thin films: effect of molecular structure. Appl Phys Lett 94:021911

    Article  Google Scholar 

  17. Hayamizu S, Tabata H, Tanaka H, Kawai T (1996) Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J Appl Phys 80:787

    Article  Google Scholar 

  18. Luka G, Witkowski BS, Wachnicki L, Jakiela R, Virt IS, Andrzejczuk M, Lewandowska M, Godlewski M (2014) Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition. Mater Sci Eng B 186:15

    Article  Google Scholar 

  19. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company Inc, Boston

    Google Scholar 

  20. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO. Prog Mater Sci 50:293

    Article  Google Scholar 

  21. Pope M, Swenberg Ch (1999) Electronic processes in organic crystals and polymers. Oxford University Press, New York

    Google Scholar 

  22. Hofmann DM, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer BK (2002) Hydrogen: a relevant shallow donor in zinc oxide. Phys Rev Lett 88:045504

    Article  Google Scholar 

  23. Tam KH, Cheung CK, Leung YH, Djurii AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL, Ding L, Ge WK (2006) Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B 110:20865

    Article  Google Scholar 

  24. Guziewicz E, Godlewski M, Wachnicki L, Krajewski TA, Luka G, Gieraltowska S, Jakiela R, Stonert A, Lisowski W, Krawczyk M, Sobczak JW, Jablonski A (2012) ALD grown zinc oxide with controllable electrical properties. Semicond Sci Technol 27:074011

    Article  Google Scholar 

  25. Krajewski TA, Dybko K, Luka G, Guziewicz E, Nowakowski P, Witkowski BS, Jakiela R, Wachnicki L, Kaminska A, Suchocki A, Godlewski M (2014) Dominant shallow donors in zinc oxide layers obtained by low-temperature atomic layer deposition: electrical and optical investigations. Acta Mater 65:69

    Article  Google Scholar 

  26. Ellmer K, Klein A, Rech B (eds) (2008) Transparent conductive zinc oxide. Springer, Heidelberg

    Google Scholar 

  27. Tynell T, Karppinen M (2014) Atomic layer deposition of ZnO: a review. Semicond Sci Technol 29:043001

    Article  Google Scholar 

  28. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Heidelberg

    Google Scholar 

  29. Sato Y, Roh J-Y, Ikuhara Y (2013) Grain-boundary structural transformation induced by geometry and chemistry. Phys Rev B 87:140101(R)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Science Centre (NCN, Poland) under decision No. DEC-2012/07/D/ST3/02145. TEM investigations were supported by the National Centre for Research and Development (NCBR, Poland) under decision No. PBS1/A5/27/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Luka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luka, G., Witkowski, B.S., Wachnicki, L. et al. Hybrid disordered blends formed from fullerene porous layers and zinc oxide grown by atomic layer deposition. J Mater Sci 50, 4132–4141 (2015). https://doi.org/10.1007/s10853-015-8970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8970-8

Keywords

Navigation