Skip to main content
Log in

Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ethylene-vinyl acetate (EVA) nanocomposites based on halloysite nanotubes (HNT) were prepared by solution casting method. The thermal, mechanical, water uptake, as well as oxygen permeability properties of the nanocomposites were examined. X-ray diffraction (XRD) and field emission scanning electron microscopy showed that HNTs were dispersed well into the EVA matrix. XRD data also suggested that HNT frustrates chain ordering and reduced total crystallinity percentage. The thermal and mechanical properties of the nanocomposites were improved with HNT loading, up to 3 wt%. Both ductility and toughness were enhanced by incorporation of up to 3 wt% of HNT, implicitly confirming that HNT has been dispersed in EVA homogeneously. The addition of HNT also enhanced the water resistance and oxygen permeability of the prepared nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. González-Benito J, Castillo E, Caldito JF (2013) Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites. Eur Polym J 49(7):1747–1752

    Article  Google Scholar 

  2. Dehsari HS et al (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Advances 4(98):55067–55076

    Article  Google Scholar 

  3. Spitalsky Z et al (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  Google Scholar 

  4. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  Google Scholar 

  5. Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48(12):4260–4273. doi:10.1007/s10853-013-7240-x

    Article  Google Scholar 

  6. Hao A et al (2014) Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites. J Mater Sci. doi:10.1007/s10853-014-8575-7

    Google Scholar 

  7. Liu M et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  Google Scholar 

  8. Hashemifard SA, Ismail AF, Matsuura T (2011) Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J Colloid Interface Sci 359(2):359–370

    Article  Google Scholar 

  9. Pasbakhsh P et al (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48(3):405–413

    Article  Google Scholar 

  10. Rooj S et al (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156

    Article  Google Scholar 

  11. Carli LN, Crespo JS, Mauler RS (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos A Appl Sci Manuf 42(11):1601–1608

    Article  Google Scholar 

  12. Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Comp Sci Technol 69(3–4):330–334

    Article  Google Scholar 

  13. Jang D, Zhang W, Choi H (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49(20):7309–7316. doi:10.1007/s10853-014-8443-5

    Article  Google Scholar 

  14. Deng S et al (2008) Toughening epoxies with halloysite nanotubes. Polymer 49(23):5119–5127

    Article  Google Scholar 

  15. Liu M et al (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15(3):205–212

    Article  Google Scholar 

  16. Ning N-Y et al (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48(25):7374–7384

    Article  Google Scholar 

  17. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 42(6):1362–1369

    Article  Google Scholar 

  18. Ismail H et al (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Testing 27(7):841–850

    Article  Google Scholar 

  19. Guo B et al (2009) Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci 255(16):7329–7336

    Article  Google Scholar 

  20. Guo B et al (2008) Styrene–butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Appl Surf Sci 255(5):2715–2722

    Article  Google Scholar 

  21. Du M et al (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876

    Article  Google Scholar 

  22. Soheilmoghaddam M et al (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2–3):936–943

    Article  Google Scholar 

  23. Hanid NA et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97

    Article  Google Scholar 

  24. De Silva RT et al (2014) Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym Comps. doi:10.1002/pc.23244

  25. Schmitt H et al (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydr Polym 89(3):920–927

    Article  Google Scholar 

  26. Sengupta R et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  Google Scholar 

  27. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  Google Scholar 

  28. Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing 37:117–122

    Article  Google Scholar 

  29. Zanetti M et al (2001) Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 42(10):4501–4507

    Article  Google Scholar 

  30. Riva A et al (2002) Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites. Polym Degrad Stab 77(2):299–304

    Article  Google Scholar 

  31. Tian Y et al (2004) Study on the structure and properties of EVA/clay nanocomposites. J Mater Sci 39(13):4301–4303. doi:10.1023/B:JMSC.0000033412.92494.ee

    Article  Google Scholar 

  32. Morlat-Therias S et al (2007) Polymer/carbon nanotube nanocomposites: influence of carbon nanotubes on EVA photodegradation. Polym Degrad Stab 92(10):1873–1882

    Article  Google Scholar 

  33. Kim S et al (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294(1–2):147–158

    Article  Google Scholar 

  34. Wang B, Huang H-X (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab 98(9):1601–1608

    Article  Google Scholar 

  35. Marcilla A et al (2005) Pyrolysis of polymers in the presence of a commercial clay. Polym Degrad Stab 88(3):456–460

    Article  Google Scholar 

  36. Yuan P et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Article  Google Scholar 

  37. Sadeghi M et al (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322(2):423–428

    Article  Google Scholar 

  38. Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139

    Article  Google Scholar 

  39. Guo B et al (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1):48–56

    Article  Google Scholar 

  40. Urresti O et al (2011) Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation. J Membr Sci 373(1–2):173–177

    Article  Google Scholar 

  41. Hoang T et al (2013) Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Comp Mater. doi:10.1177/0021998313476319

  42. Bai Y et al (2007) Pervaporation characteristics of ethylene–vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution. J Membr Sci 305(1):152–159

    Article  Google Scholar 

  43. Devallencourt C et al (2002) Study of transport of small molecules through ethylene-co-vinyl acetate copolymers films. Part A: Water molecules. Polym Testing 21(3):253–262

    Article  Google Scholar 

  44. Mishra S, Luyt A (2008) Effect of organic peroxides on the morphological, thermal and tensile properties of EVA-organoclay nanocomposites. express. Polym Lett 2:256–264

    Article  Google Scholar 

  45. Wilson R et al (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014

    Article  Google Scholar 

  46. Arsac A, Carrot C, Guillet J (1999) Rheological characterization of ethylene vinyl acetate copolymers. J Appl Polym Sci 74(11):2625–2630

    Article  Google Scholar 

  47. Han D et al (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83(2):966–972

    Article  Google Scholar 

  48. Soheilmoghaddam M et al (2014) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Testing 33:121–130

    Article  Google Scholar 

  49. Soheilmoghaddam M et al (2014) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 106:326–334

    Article  Google Scholar 

  50. Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. J Appl Polym Sci 131:41158. doi:10.1002/app.41158

  51. He Y et al (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87(4):2706–2711

    Article  Google Scholar 

  52. Liu M et al (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51(4):566–575

    Article  Google Scholar 

  53. Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75:52–59

    Article  Google Scholar 

  54. Pramanik M et al (2003) EVA/clay nanocomposite by solution blending: effect of aluminosilicate layers on mechanical and thermal properties. Macromol Res 11(4):260–266

    Article  Google Scholar 

  55. Khodkar F, Ebrahimi NG (2011) Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers hollow fibers. J Appl Polym Sci 119(4):2085–2092

    Article  Google Scholar 

  56. Gavgani J, Adelnia H, Gudarzi M (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. doi:10.1007/s10853-013-7698-6

    Article  Google Scholar 

  57. Swain SK et al (2013) Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohydr Polym 95(2):728–732

    Article  Google Scholar 

  58. Ghosal K, Freeman BD (1994) Gas separation using polymer membranes: an overview. Polym Adv Technol 5(11):673–697

    Article  Google Scholar 

  59. Liu M et al (2012) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290(10):895–905

    Article  Google Scholar 

Download references

Acknowledgements

Our special thanks are due to Zhaleh Nayebossadrian for her kind and great help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soheilmoghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidsorkhi, H.C., Adelnia, H., Heidar Pour, R. et al. Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites. J Mater Sci 50, 3237–3245 (2015). https://doi.org/10.1007/s10853-015-8891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8891-6

Keywords

Navigation