Skip to main content
Log in

Structural optimization of Pt–Pd–Au trimetallic nanoparticles by discrete particle swarm algorithms

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Trimetallic nanoparticles have received enormous attention due to their multifunctional catalytic activities. Their surface structures strongly determine their catalytic performances, therefore an investigation on their stable structures is of great importance for understanding the catalytic activity. In this article, we have employed an improved discrete particle swarm optimization algorithm to systematically explore the structural stability and segregation behavior of tetrahexahedral Pt–Pd–Au trimetallic nanoparticles. The exchange probability was introduced to decrease computational cost and to avoid falling into local optima. The simulation results reveal that Pt atoms tend to occupy the interior, while both Pd and Au atoms preferentially segregate to the surface. Furthermore, Au atoms exhibit stronger surface segregation than Pd ones, and the segregative behavior is less pronounced in larger nanoparticles. Besides, the distribution of surface atoms has been further examined by the analyses of coordination number. This study provides a fundamental perspective on structural features and segregation behavior of trimetallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688–2720

    Article  Google Scholar 

  2. Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40(7):4167–4185

    Article  Google Scholar 

  3. Huang R, Wen YH, Zhu ZZ, Sun SG (2012) Pt-Pd bimetallic catalysts: structural and thermal stabilities of core-shell and alloyed nanoparticles. J Phys Chem C 116(15):8664–8671

    Article  Google Scholar 

  4. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  Google Scholar 

  5. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Mater 7(4):333–338

    Article  Google Scholar 

  6. Kesavan L, Tiruvalam R, Ab Rahim MH, Bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331(6014):195–199

    Article  Google Scholar 

  7. Khanal S, Bhattarai N, Velazquez-Salazar JJ, Bahena D, Soldano G, Ponce A, Mariscal MM, Mejia-Rosalesc S, Jose-Yacaman M (2013) Trimetallic nanostructures: the case of AgPd-Pt multiply twinned nanoparticles. Nanoscale 5:12456–12463

    Article  Google Scholar 

  8. Deng YJ, Tian N, Zhou ZY (2012) Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem Sci 3(4):1157–1161

    Article  Google Scholar 

  9. Wang L, Yamauchi Y (2010) Autoprogrammed synthesis of triple-layered Au@ Pd@ Pt core-shell nanoparticles consisting of a Au@ Pd bimetallic core and nanoporous Pt shell. J Am Chem Soc 132(39):13636–13638

    Article  Google Scholar 

  10. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  Google Scholar 

  11. Wille LT, Vennik J (1985) Computational complexity of the ground-state determination of atomic clusters. J Phys A 18:L419–L422

    Article  Google Scholar 

  12. Yun K, Cho YH, Cha PR, Lee J, Nam HS (2012) Monte Carlo simulations of the structure of Pt-based bimetallic nanoparticles. Acta Mater 60(12):4908–4916

    Article  Google Scholar 

  13. Qin LJ, Zhang YH, Huang SP, Tian HP, Wang P (2010) Atomic-scale structure of Co-Pt bimetallic nanoparticles: Monte Carlo simulations. Phys Rev B 82:075413

    Article  Google Scholar 

  14. Yuge K (2010) Segregation of Pt28Rh27 bimetallic nanoparticles: a first-principles study. J Phys 22(24):245401

    Google Scholar 

  15. Deng L, Hu WY, Deng HQ, Xiao SF (2010) Surface segregation and structural features of bimetallic Au-Pt nanoparticles. J Phys Chem C 114(25):11026–11032

    Article  Google Scholar 

  16. Guo JY, Xu CX, Hu AM, Oakes KD, Sheng FY (2012) Sintering dynamics and thermal stability of novel configurations of Ag clusters. J Phys Chem Solids 73(11):1350–1357

    Article  Google Scholar 

  17. Wang Y, Miao M, Lv J, Zhu L (2012) An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys 137:224108–224113

    Article  Google Scholar 

  18. Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82(9):094116

    Article  Google Scholar 

  19. Bochicchio D, Ferrando R (2013) Morphological instability of core-shell metallic nanoparticles. Phys Rev B 87(16):165435

    Article  Google Scholar 

  20. Cheng D, Hou M (2010) Structures, thermal stability, and melting behaviors of free-standing pentagonal multi-shell Pd-Pt nanowires. Eur Phys J B 74:379

    Article  Google Scholar 

  21. ChuláYeo SC, HyeáKim DH, MoáLee H (2012) Phase diagram and structural evolution of Ag-Au bimetallic nanoparticles: molecular dynamics simulations. Phys Chem Chem Phys 14(8):2791–2796

    Article  Google Scholar 

  22. Okeke G, Hammond RB, Antony SJ (2013) Molecular dynamics simulation of anatase TiO2 nanoparticles. J Nanosci Nanotechnol 13(2):1047–1052

    Article  Google Scholar 

  23. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735

    Article  Google Scholar 

  24. Cagin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnson WL, Goddard WA (1999) Calculation of mechanical, thermodynamic and transport properties of metallic glass formers. Mater Res Soc Symp Proc 554:43–48

    Article  Google Scholar 

  25. Qi Y, Çağin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115(1):385–394

    Article  Google Scholar 

  26. Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B 71(19):195415

    Article  Google Scholar 

  27. Ikeda H, Qi Y, Cagin T, Samwer K, Johnson WL, Goddard WA (1999) Strain rate induced amorphization in metallic nanowires. Phys Rev Lett 82:2900–2903

    Article  Google Scholar 

  28. Nam HS, Hwang NM, Yu BD, Yoon JK (2002) Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys Rev Lett 89(27):275502

    Article  Google Scholar 

  29. Huang R, Wen YH, Shao GF, Zhu ZZ, Sun SG (2013) Thermal stability and shape evolution of tetrahexahedral Au-Pd core-shell nanoparticles with high-index facets. J Phys Chem C 117(13):6896–6903

    Article  Google Scholar 

  30. Qi Y, Çağin T, Kimura Y, Goddard Iii WA (2001) Viscosities of liquid metal alloys from nonequilibrium moleculardynamics. J Comput-Aided Mater 8:233–245

    Article  Google Scholar 

  31. Wang KP, Huang L, Zhou CG, Pang W (2003) Particle swarm optimization for traveling salesman problem. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2–5

  32. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322(5903):932–934

    Article  Google Scholar 

  33. García-Gutiérrez DI, Gutiérrez-Wing CE, Giovanetti L, Ramallo-López JM, Requejo FG, José-Yacaman M (2005) Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles. J Phys Chem B 109(9):3813–3821

    Article  Google Scholar 

  34. Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li ZY, Rycenga M, Xia Y (2010) Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J Am Chem Soc 132(8):2506–2507

    Article  Google Scholar 

  35. Darby JB, Myles KM (1972) A thermodynamic study of solid Pd-Pt alloys. Met Trans 3:653–657

    Article  Google Scholar 

  36. Lu ZW, Klein BM, Zunger A (1995) Ordering tendencies in Pd-Pt, Rh-Pt, and Ag-Au alloys. J Phase Equilib 16(1):36–45

    Article  Google Scholar 

  37. Luyten J, De Keyzer J, Wollants P, Creemers C (2009) Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Rh, Pt-Pd, Pd-Rh and ternary Pt-Pd-Rh alloys. Calphad 33(2):370–376

    Article  Google Scholar 

  38. Puliti G, Paolucci S, Sen M (2011) Thermodynamic properties of gold-water nanolayer mixtures using molecular dynamics. J Nanopart Res 13(9):4277–4293

    Article  Google Scholar 

  39. Cheng DJ, Liu X, Cao DP, Wang WC, Huang SP (2007) Surface segregation of Ag-Cu-Au trimetallic clusters. Nanotechnology 18:475702–475709

    Article  Google Scholar 

  40. Shan B, Wang L, Yang S, Hyun J, Kapur N, Zhao YJ, Nicholas JB, Cho K (2009) First-principles-based embedded atom method for PdAu nanoparticles. Phys Rev B 80:035404

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51271156 and 11474234), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01255 and 2013J06002), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012121010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Fang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, TE., Liu, TD., Zheng, JW. et al. Structural optimization of Pt–Pd–Au trimetallic nanoparticles by discrete particle swarm algorithms. J Mater Sci 50, 3308–3319 (2015). https://doi.org/10.1007/s10853-015-8880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8880-9

Keywords

Navigation