Skip to main content
Log in

An effect of lactic acid oligomers on the barrier properties of polylactide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oligomers of lactic acid (LA) at different concentrations were melt-mixed with a polymeric matrix of high molecular weight polylactide (PLA) to improve their barrier properties. Purified and unpurified LA oligomers, obtained by a melt polycondensation reaction, were blended with PLA in order to study how the purification process affected the final film properties. In all the developed blend compositions, significant improvements in the permeability to both water and oxygen were observed in comparison with pure PLA, achieving permeability reductions of up to 54 %. This behaviour was ascribed to an antiplasticization phenomenon of the barrier properties related to the occupancy of the so-called Langmuir-free volume sites by the oligomer molecules. The results also showed that the permeability of these materials was greatly influenced by the presence of moisture, especially in the blends with unpurified oligomers. This behaviour was mainly ascribed to the higher content of the hydroxyl groups present in the latter materials, which led to an observable water sorption and hence to an increase in free volume for permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  Google Scholar 

  2. Rhim JW (2007) Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotechnol 16(5):691–709

    Google Scholar 

  3. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  Google Scholar 

  4. Jacobsen S, Fritz HG (1999) Plasticizing polylactide: the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39(7):1303–1310

    Article  Google Scholar 

  5. Simoes CL, Viana JC, Cunha AM (2009) Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci 112(1):345–352

    Article  Google Scholar 

  6. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 7(5):987–1004

    Article  Google Scholar 

  7. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145

    Article  Google Scholar 

  8. Gorrasi G, Vittoria V, Murariu M, Da Silva FA, Alexandre M, Dubois P (2008) Effect of filler content and size on transport properties of water vapor in PLA/calcium sulfate composites. Biomacromolecules 9(3):984–990

    Article  Google Scholar 

  9. Singh S, Gupta RK, Ghosh AK, Maiti SN, Bhattacharya SN (2010) Poly (l-lactic acid)/layered silicate nanocomposite blown film for packaging application: thermal, mechanical and barrier properties. J Polym Eng 30(5–7):361–375

    Google Scholar 

  10. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays. J Appl Polym Sci 122(1):112–125

    Article  Google Scholar 

  11. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53(1):58–65

    Article  Google Scholar 

  12. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956

    Article  Google Scholar 

  13. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 11:3887–3899

    Article  Google Scholar 

  14. Kim HK, Kim SJ, Lee HS, Choi JH, Jeong CM, Sung MH et al (2013) Mechanical and barrier properties of poly(lactic acid) films coated by nanoclay-ink composition. J Appl Polym Sci 127(5):3823–3829

    Article  Google Scholar 

  15. Park SH, Lee HS, Choi JH, Jeong CM, Sung MH, Park HJ (2012) Improvements in barrier properties of poly(lactic acid) films coated with chitosan or chitosan/clay nanocomposite. J Appl Polym Sci 125(SUPPL. 1):E675–E680

    Article  Google Scholar 

  16. Svagan AJ, Åkesson A, Cárdenas M, Bulut S, Knudsen JC, Risbo J et al (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules 13(2):397–405

    Article  Google Scholar 

  17. Martucci JF, Ruseckaite RA (2010) Three-layer sheets based on gelatin and poly(lactic acid), part 1: preparation and properties. J Appl Polym Sci 118(5):3102–3110

    Article  Google Scholar 

  18. Busolo MA, Torres-Giner S, Lagaron JM (2009) Enhancing the gas barrier properties of polylactic acid by means of electrospun ultrathin zein fibers. In: ANTEC, proceedings of the 67th annual technical conference, Chicago, vol 5, pp 2763–2768

  19. Razavi SM, Dadbin S, Frounchi M (2012) Oxygen-barrier properties of poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable films. J Appl Polym Sci 125(SUPPL. 2):E20–E26

    Article  Google Scholar 

  20. Almenar E, Auras R (2010) Permeation, sorption, and diffusion in poly(lactic acid). In: Auras R, Lim L-T, Selke S, Tsuji H (eds) Poly(lactic acid) synthesis, structure, properties, processing and applications. Wiley, Hoboken, pp 155–179

    Chapter  Google Scholar 

  21. Lee JS, Leisen J, Choudhury RP, Kriegel RM, Beckham HW, Koros WJ (2012) Antiplasticization-based enhancement of poly(ethylene terephthalate) barrier properties. Polymer 53(1):213–222

    Article  Google Scholar 

  22. Garcia A, Iriarte M, Uriarte C, Etxeberria A (2006) Study of the relationship between transport properties and free volume based in polyamide blends. J Membr Sci 284(1–2):173–179

    Article  Google Scholar 

  23. Garcia A, Iriarte M, Uriarte C, Iruin JJ, Etxeberria A, Del Rio J (2004) Antiplasticization of a polyamide: a positron annihilation lifetime spectroscopy study. Polymer 45(9):2949–2957

    Article  Google Scholar 

  24. Eceolaza S, Iriarte M, Uriarte C, Del Rio J, Etxeberria A (2012) Influence of the organic compounds addition in the polymer free volume, gas sorption and diffusion. Eur Polym J 48(7):1218–1229

    Article  Google Scholar 

  25. Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17(3):132–140

    Article  Google Scholar 

  26. Ni C, Luo R, Xu K, Chen GQ (2009) Thermal and crystallinity property studies of poly (l-lactic acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. J Appl Polym Sci 111(4):1720–1727

    Article  Google Scholar 

  27. Kanehashi S, Kusakabe A, Sato S, Nagai K (2010) Analysis of permeability; solubility and diffusivity of carbon dioxide; oxygen; and nitrogen in crystalline and liquid crystalline polymers. J Membr Sci 365(1–2):40–51

    Article  Google Scholar 

  28. Tsuji H, Okino R, Daimon H, Fujie K (2006) Water vapor permeability of poly(lactide)s: effects of molecular characteristics and crystallinity. J Appl Polym Sci 99(5):2245–2252

    Article  Google Scholar 

  29. Komatsuka T, Kusakabe A, Nagai K (2008) Characterization and gas transport properties of poly(lactic acid) blend membranes. Desalination 234(1–3):212–220

    Article  Google Scholar 

  30. Drieskens M, Peeters R, Mullens J, Franco D, Iemstra PJ, Hristova-Bogaerds DG (2009) Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J Polym Sci B 47(22):2247–2258

    Article  Google Scholar 

  31. Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658

    Article  Google Scholar 

  32. Fiori S, Ara P (2009) Method for plasticizing lactic acid polymers. Patent WO 2009/092825

  33. Kiremitci-Gumusderelioglu M, Deniz G (1999) Synthesis, characterization and in vitro degradation of poly(dl-lactide)/poly(dl-lactide-co-glycolide) films. Turk J Chem 23(2):153–161

    Google Scholar 

  34. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  Google Scholar 

  35. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(l-lactic acid). J Polym Sci A 38(9):1673–1679

    Article  Google Scholar 

  36. Noël M, Fredon E, Mougel E, Masson D, Masson E, Delmotte L (2009) Lactic acid/wood-based composite material. Part 1: synthesis and characterization. Bioresour Technol 100(20):4711–4716

    Article  Google Scholar 

  37. Aydin E, Planell JA, Hasirci V (2011) Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications. J Mater Sci 22(11):2413. doi:10.1007/s10856-011-4435-z

    Google Scholar 

  38. Gonçalves CMB, Coutinho JAP, Marrucho IM (2010) Optical properties. In: Auras R, Lim L-T, Selke S, Tsuji H (eds) Poly(lactic acid) synthesis, structure, properties, processing and applications. Wiley, Hoboken, pp 97–112

    Chapter  Google Scholar 

  39. Ristić IS, Tanasić L, Nikolić LB, Cakić SM, Ilić OZ, Radičević RZ et al (2011) The properties of poly(l-lactide) prepared by different synthesis procedure. J Polym Environ 19(2):419–430

    Article  Google Scholar 

  40. Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532

    Article  Google Scholar 

  41. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S et al (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38(19):8012–8021

    Article  Google Scholar 

  42. Kazuyo DS, Sasashige TA, Kanamoto T, Hyon SH (2003) Preparation of oriented β-form poly(l-lactic acid) by solid-state coextrusion: effect of extrusion variables. Macromolecules 36(10):3601–3605

    Article  Google Scholar 

  43. Liu D, Yuan X, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 47(7):3159. doi:10.1007/s10853-011-6150-z

    Article  Google Scholar 

  44. Vasanthan N, Ly H, Ghosh S (2011) Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l-lactic acid) nanocomposites. J Phys Chem B 115(31):9556–9563

    Article  Google Scholar 

  45. Braun B, Dorgan JR, Dec SF (2006) Infrared spectroscopic determination of lactide concentration in polylactide: an improved methodology. Macromolecules 39(26):9302–9310

    Article  Google Scholar 

  46. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci B 42(1):25–32

    Article  Google Scholar 

  47. Xie J-X, Yang R-J (2012) Preparation and characterization of high-molecular-weight poly(l-lactic acid) by chain-extending reaction with phosphites. J Appl Polym Sci 124(5):3963–3970

    Article  Google Scholar 

  48. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41(4):1352–1357

    Article  Google Scholar 

  49. Olabisi O (1981) Interpretations of polymer–polymer miscibility. J Chem Educ 58(11):944–950

    Article  Google Scholar 

  50. Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P (2010) Optimization of the reaction conditions and characterization of l-lactic acid direct polycondensation products catalyzed by a non-metal-based compound. J Appl Polym Sci 116(3):1597–1602

    Google Scholar 

  51. Xing Q, Zhang X, Dong X, Liu G, Wang D (2012) Low-molecular weight aliphatic amides as nucleating agents for poly (l-lactic acid): conformation variation induced crystallization enhancement. Polymer 53(11):2306–2314

    Article  Google Scholar 

  52. Zhang KY, Ran XH, Zhuang YG, Yao B, Dong LS (2009) Blends of poly(lactic acid) with thermoplastic acetylated starch. Chem Res Chin Univ 25(5):748–753

    Google Scholar 

  53. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH et al (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377

    Article  Google Scholar 

  54. Ishihara T, Ogata N, Shinokawa T, Tokunaga Y, Ogihara T, Nakane K (2006) Structure and physical properties of poly(l-lactic acid)/oligomeric(d-lactic acid) blends. Sen’i Gakkaishi 62(9):199–204

    Article  Google Scholar 

  55. Courgneau C, Domenek S, Guinault A, Avérous L, Ducruet V (2011) Analysis of the structure–properties relationships of different multiphase systems based on plasticized poly(lactic acid). J Polym Environ 19(2):362–371

    Article  Google Scholar 

  56. Byun Y, Kim YT, Whiteside S (2010) Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng 100(2):239–244

    Article  Google Scholar 

  57. Larocca NM, Pessan LA (2003) Effect of antiplasticisation on the volumetric, gas sorption and transport properties of polyetherimide. J Membr Sci 218(1–2):69–92

    Article  Google Scholar 

  58. Maeda Y, Paul DR (1987) Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation. J Polym Sci B 25(5):1005–1016

    Article  Google Scholar 

  59. Yeh JT, Chen HY (2007) Blending and oxygen permeation properties of the blown films of blends of modified polyamide and ethylene vinyl alcohol copolymer with varying vinyl alcohol contents. J Mater Sci 42:5742. doi:10.1007/s10853-006-0555-0

    Article  Google Scholar 

  60. Mittal V (2008) Effect of the presence of excess ammonium ions on the clay surface on permeation properties of epoxy nanocomposites. J Mater Sci 43:4972. doi:10.1007/s10853-008-2732-9

    Article  Google Scholar 

  61. Apicella A, Egiziano L, Nicolais L, Tucci V (1988) Environmental degradation of the electrical and thermal properties of organic insulating materials. J Mater Sci 23:729. doi:10.1007/BF01174713

    Article  Google Scholar 

  62. Singh VM, Koo D, Palmese GR, Cairncross RA (2011) Synthesis of polylactide with varying molecular weight and aliphatic content: effect on moisture sorption. J Appl Polym Sci 120(5):2543–2549

    Article  Google Scholar 

  63. Koo D, Du A, Palmese GR, Cairncross RA (2012) Moisture management of polylactides: the effect of heat treatment. Polymer 53(5):1115–1123

    Article  Google Scholar 

Download references

Acknowledgements

J Ambrosio-Martín would like to thank the Spanish Ministry of Economy and Competitiveness for the FPI Grant BES-2010-038203. A. Lopez-Rubio is the recipient of a “Ramon y Cajal” contract from the Spanish Ministry of Economy and Competitiveness. The authors acknowledge financial support from the MINECO (MAT2012-38947-C02-01 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lagaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio-Martín, J., Fabra, M.J., Lopez-Rubio, A. et al. An effect of lactic acid oligomers on the barrier properties of polylactide. J Mater Sci 49, 2975–2986 (2014). https://doi.org/10.1007/s10853-013-7929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7929-x

Keywords

Navigation