Skip to main content
Log in

Surface modification of natural and synthetic hydroxyapatites powders by grafting polypyrrole

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The modification of hydroxyapatite surface by grafting polypyrrole has been investigated with two hydroxyapatites (HA) powders. One is natural derived from bovine bone, it was prepared by calcination at 750 °C. The other is synthetic synthesized by the sol–gel method using Ca(NO3)2·4H2O and P2O5. The presence of (C4H3N) n polymeric fragment bound to HA surface was evidenced by infrared analysis. X-ray powder analysis has shown that the apatite structure remains unchanged during the surface modification. The thermogravimetric analysis has shown that the weight loss exhibited by HA increased from 8.7 to 47.8 and from 18.3 to 42.8 wt% for natural hydroxyapatite (NHA)/polypyrrole and synthetic hydroxyapatite (SHA)/polypyrrole, respectively, as the pyrrole solution concentration increased from 5 to 15 wt%. Grafting of polypyrrole on HA surface caused an increase in specific surface area up to 113 m2/g for SHA and up to 107 m2/g for NHA aged in 15 wt% pyrrole solution (HA/15Pyrrole). According to the results found for these two apatites, a mechanism of surface modification was proposed for the formation of N–H hydrogen bonds as the result of a reaction between the C4H5N organic reagent and OH ions of the HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Haberko K, Bucko M, Brzezinska-Miecznik J (2006) J Eur Ceram Soc 26:537

    Article  CAS  Google Scholar 

  2. Kivrak N, Tas AC (1998) J Am Ceram Soc 81:2245

    Article  CAS  Google Scholar 

  3. Balamurugan A, Kannan S, Rajeswari S (2002) Trends Biomater Artif Organs 16:18

    Google Scholar 

  4. Layrolle P, Ito A, Tateishi T (1998) J Am Ceram Soc 81:1421

    Article  CAS  Google Scholar 

  5. Sivakumar M, Kumar TSS, Shantha KL, Rao KP (1996) Biomaterials 17:1709

    Article  CAS  Google Scholar 

  6. Shi D, Jaing G, Wen X (2000) J Biomed Mater Res B Appl Biomater 53:457

    Article  CAS  Google Scholar 

  7. Tadic D, Epple M (2003) Biomaterials 24:4565

    Article  CAS  Google Scholar 

  8. Murugan R, Rao KP (2002) Trends Biomater Artif Organs 16:43

    Google Scholar 

  9. Sasikumar S, Vijayaraghavan R (2006) Biomater Artif Organs 19:70

    Google Scholar 

  10. Prabakaran K, Balamurugan A, Rajeswari S (2005) Bull Mater Sci 28:115

    Article  CAS  Google Scholar 

  11. Rocha JHG, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, Ferreira JMF (2005) Bone 37:850

    Article  CAS  Google Scholar 

  12. Rocha JHG, Lemos AF, Kannan S, Agathopoulos S, Ferreira JMF (2005) J Mater Chem 15:5007

    Article  CAS  Google Scholar 

  13. Herliansyah MK, Pujianto E, Hamdi M, Ide-Ektessabi A, Wildan MW, Tontowi AE (2006) In: Proceeding of international conference on product design and manufacture, Yogyakarta, Indonesia

  14. Herliansyah MK, Nasution DA, Hamdi M, Ide-Ektessabi A, Wildan MW, Tontowi AE (2007) Mater Sci Forum 1441:561

    Google Scholar 

  15. Ooi CY, Hamdi M, Ramesh S (2007) Ceram Int 33:1171

    Article  CAS  Google Scholar 

  16. Toque JA, Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW (2006) In: Proceeding of 3rd Kuala Lumpur international conference on biomedical engineering, Biomed. Springer, Kuala Lumpur

  17. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T (2008) Curr Appl Phys 8:270

    Article  Google Scholar 

  18. Wang F, Li MS, Lu YP, Qi YX (2005) Mater Lett 59:916

    Article  CAS  Google Scholar 

  19. Goren S, Gokbayrak H, Altinas S (2004) Key Eng Mater 264:1949

    Article  Google Scholar 

  20. Herliansyah MK, Hamdi M, Ide-Ektessabi A, Ildan MW, Toque JA (2009) Mater Sci Eng 29:1674

    Article  CAS  Google Scholar 

  21. Preinerstorfer B, Lubda D, Lindner W, Lammerhofer M (2006) J Chromatogr A 1106:94

    Article  CAS  Google Scholar 

  22. De Groot K (1983) In: Raton B (ed) Bioceramics of calcium phosphate. CRC Press, Cleveland

    Google Scholar 

  23. Elliot JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  24. Mori K, Oshiba M, Hara T, Mizugaki TM, Ebitani K, Kaneda K (2006) New J Chem 30:44

    Article  CAS  Google Scholar 

  25. Dessoudeix M, Jauregui-Haza UJ, Heughebaert M, Wilhelm AM, Delmas H, Lebugle A, Kalck P (2002) Adv Synth Catal 344:406

    Article  CAS  Google Scholar 

  26. Murugan R, Ramakrishna S (2004) Biomaterials 25:3073

    Article  CAS  Google Scholar 

  27. D’Andrea SC, Fadeev AY (2003) Langmuir 19:7904

    Article  Google Scholar 

  28. Borum-Nicholas L, Wilson OC Jr (2003) Biomaterials 24:3671

    Article  CAS  Google Scholar 

  29. Vega ED, Narda GE, Ferretti FH (2003) J Colloid Interface Sci 268:37

    Article  CAS  Google Scholar 

  30. Borum L, Wilson OC Jr (2003) Biomaterials 24:3681

    Article  CAS  Google Scholar 

  31. Liu Q, de Wijn JR, van Blitterswijk CA (1998) J Biomed Mater Res 40:257

    Article  CAS  Google Scholar 

  32. Liu Q, de Wijn JR, de Groot K, van Blitterswijk CA (1998) Biomaterials 19:1067

    Article  CAS  Google Scholar 

  33. Tanaka H, Chikazawa M, Kandori K, Ishikawa T (2000) Phys Chem Phys 2:2647

    Article  CAS  Google Scholar 

  34. Garner B, Georgevich A, Hodgson AJ, Liu L, Wallace GG (1999) J Biomed Mater Res 44:121

    Article  CAS  Google Scholar 

  35. Collier JH, Camp JP, Hudson TW, Schmidt CE (2000) J Biomed Mater Res 50:574

    Article  CAS  Google Scholar 

  36. Giglio EDE, Sabbatini L, Colucci S, Zambonin G (2000) J Biomater Sci Polym Ed 11:1073

    Article  Google Scholar 

  37. Castano H, O’Rear EA, McFetridge PS, Sikavitsas VI (2004) Macromol Biosci 4:785

    Article  CAS  Google Scholar 

  38. Jiang Z, Ge D, Shi W, Zhang Q (2005) Synth Met 151:152

    Article  CAS  Google Scholar 

  39. Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Hand-book of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  40. Diaz AF, Lacroix JC (1988) New J Chem 12:171

    CAS  Google Scholar 

  41. Machida S, Miyata S (1989) Synth Met 31:311

    Article  CAS  Google Scholar 

  42. Genies EM, Bidan G, Diaz AF (1983) J Electroanal Chem 149:101

    Article  CAS  Google Scholar 

  43. Ansari R (2005) Asian J Chem 17:129

    Google Scholar 

  44. Ansari R, Khoshbakht Fahim N (2007) React Funct Polym 67:367

    Article  CAS  Google Scholar 

  45. Fathi MH, Hanifi A (2007) Mater Lett 61:3978

    Article  CAS  Google Scholar 

  46. Bogdanoviciene I, Beganskiene A, Tõnsuaadu K (2006) Mater Res Bull 41:1754

    Article  CAS  Google Scholar 

  47. Lafon JF (2004) Synthèse, stabilité thermique et frittage d’hydroxyapatites carbonatées. Thèse d’état, Ecole doctorale Science-Technilogie-Santé, Université de LIMOGES

  48. Kim T-S, Kumta PN (2004) Mater Sci Eng B 111:232

    Article  Google Scholar 

  49. Wilson O, Riman R (1994) J Colloid Interface Sci 167:358

    Article  CAS  Google Scholar 

  50. Choi HW, Lee HJ, Kim KJ (2006) J Colloid Interface Sci 304:277

    Article  CAS  Google Scholar 

  51. Spectroscopie infrarouge, Richard Giasson. http://www.chimie.umontreal.ca. Accessed 31 Oct 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yala, S., Khireddine, H., Sidane, D. et al. Surface modification of natural and synthetic hydroxyapatites powders by grafting polypyrrole. J Mater Sci 48, 7215–7223 (2013). https://doi.org/10.1007/s10853-013-7538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7538-8

Keywords

Navigation