Skip to main content
Log in

Strain rate-dependant mechanical properties of OFHC copper

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of high purity copper have been extensively studied in the literature, with yield and flow stresses measured as a function of strain rate, grain size, and temperature. This paper presents a comprehensive study of the strain rate and grain size dependence of the mechanical properties of OFHC copper, including an investigation of the previously observed upturn in rate dependence of flow stress at high rates of strain (≥500 s−1). As well as a comprehensive review of the literature, an experimental study is presented investigating the mechanical properties of OFHC copper across a range of strain rates from 10−3 to 10s−1, in which the copper samples were designed to minimize the effects of inertia in the testing. The experimental data from this study are compared with multiple sources from the literature varying strain rate and grain size to understand the differences between experimental results on nominally the same material. It is observed that the OFHC copper in this study showed a similar increase in flow stress with strain rate seen by other researchers at high strain rates. The major contribution to the variation between experimental results from different studies is most likely the starting internal structure for the materials, which is dependent on cold working, annealing temperature, and annealing time. In addition, the experimental variation within a particular study at a given strain rate may be due to small variations in the internal structure and the strain rate history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Follansbee PS, Kocks UF (1988) Acta Metall 36(1):81

    Article  Google Scholar 

  2. Meyers MA, Andrade UR, Chokshi AH (1995) Metall Mater Trans A 26A(11):2881

    Article  CAS  Google Scholar 

  3. Gorham DA, Pope PH, Field JE (1992) Proc R Soc A 438:153

    Article  Google Scholar 

  4. Ostwaldt D, Klimanek P (1997) Mater Sci Eng A A234–A236:810

    Google Scholar 

  5. Kvackaj T et al (2010) Mater Lett 64:2344

    Article  CAS  Google Scholar 

  6. Miyazaki S, Fujita H (1978) Trans Jpn Inst Met 19(8):438

    CAS  Google Scholar 

  7. Ono N, Karashima S (1982) Scr Metall 16:381

    Article  CAS  Google Scholar 

  8. Gourdin WH, Lassila DH (1991) Acta Metall Mater 39(10):2337

    Article  CAS  Google Scholar 

  9. Gertsman VY et al (1994) Acta Metall Mater 42(10):3539

    Article  CAS  Google Scholar 

  10. Kumar A, Kumble RG (1969) J Appl Phys 40(9):3475

    Article  CAS  Google Scholar 

  11. Tanner AB, McDowell DL (1999) Int J Plast 15:375

    Article  CAS  Google Scholar 

  12. Hansen N, Ralph B (1982) Acta Metall 30:411

    Article  CAS  Google Scholar 

  13. Mishra A et al (2008) Acta Mater 56:2770

    Article  CAS  Google Scholar 

  14. Lennon AM, Ramesh KT (2004) Int J Plast 30:269

    Article  Google Scholar 

  15. Samanta SK (1971) J Mech Phys Solids 19:117

    Article  Google Scholar 

  16. Petch NJ (1953) J Iron Steel Inst 174(1):25

    CAS  Google Scholar 

  17. Hall EO (1951) Proc Phys Soc B64(9):747

    CAS  Google Scholar 

  18. Chokshi AH et al (1989) Scr Metall 23:1679

    Article  CAS  Google Scholar 

  19. Iyer RS et al (1999) Mater Sci Eng A A264:210

    Google Scholar 

  20. Gorham DA (1989) J Phys D Appl Phys 22:1888

    Article  Google Scholar 

  21. Follansbee PS (2001) In: Murr LE, Staudhammer KP, Meyeres MA (eds) Metallurgical applications of shock-wave and high-strain-rate phenomena. Marcel Dekker, Inc., New York, pp 451

    Google Scholar 

  22. Swegle JW, Grady DE (1985) J Appl Phys 58(2):692

    Article  CAS  Google Scholar 

  23. Follansbee PS, Regazzoni G, Kocks UF (1984) In: Harding J (ed) Mechanical properties of materials at high strain rates. The Institute of Physics, London, pp 71

    Google Scholar 

  24. Armstrong RW, Zerilli FJ (1988) J Phys C3 49(9):529

    Google Scholar 

  25. Armstrong RW, Zerilli FJ (2001) In: Staudhammer LEMKP, Meyers MA (eds) Fundamental issues and applications of shock-wave and high-strain-rate phenomena. Elsevier Science Ltd, Amsterdam, pp 115

    Google Scholar 

  26. Gorham DA (1991) J Phys D Appl Phys 24:1489

    Article  CAS  Google Scholar 

  27. Johnson GR, Cook WH (1983) In: Proceedings of the 7th international symposium on ballistics. International Ballistics Committee, The Hague

  28. Gao CY, Zhang LC (2010) Mater Sci Eng A 527:3138

    Article  Google Scholar 

  29. Armstrong RW, Arnold W, Zerrilli FJ (2009) J Appl Phys 105:023511

    Article  Google Scholar 

  30. Nemat-Nasser S, Li Y (1998) Acta Mater 46(2):565

    Article  CAS  Google Scholar 

  31. Gao CY, Zhang LC (2012) Int J Plast 32–33:121

    Article  Google Scholar 

  32. Voyiadjis GZ, Abed FH (2005) Mech Mater 37:355

    Article  Google Scholar 

  33. Rusinek A, Rodriguez-Martinez JA, Arias A (2010) Int J Mech Sci 52:120

    Article  Google Scholar 

  34. Chen W, Zhang X (1997) J Eng Mater Technol Trans ASME 119(3):305

    Article  CAS  Google Scholar 

  35. Li P, Siviour CR, Petrinic N (2009) Exp Mech 49:587

    Article  CAS  Google Scholar 

  36. Gray GT III (2002) In: Kuhn H, Medlin D (eds) ASM handbook. Mechanical testing and evaluation, vol 8. ASM International, Materials Park, pp 462

    Google Scholar 

  37. Tasker DG, Dick RD, Wilson WH (1998) In: Shock compression of condensed matter—1997. American Institute of Physics

  38. Gray GT (2000) In: Kuhn H, Medlin D (eds) ASM handbook: mechanical testing and evaluation, vol 8. ASM International, Materials Park, pp 462

    Google Scholar 

  39. Jia J, Ramesh KT (2004) Exp Mech 44(5):445

    Article  Google Scholar 

  40. Casem DT (2009) In: Society for Experimental Mechanics Conference. Albuquerque

  41. Jordan JL, Siviour CR, Foley JR, Brown EN (2007) Polymer 48(14):4184

    Article  CAS  Google Scholar 

  42. Jordan JL, Foley JR, Siviour CR (2008) Mech Time Depend Mater 12(3):249

    Article  CAS  Google Scholar 

  43. Jordan JL, Siviour CR, Richards DW, Rumchik CG, Dick RD (2005) In: Society for Experimental Mechanics Conference. Portland

  44. Nemat-Nasser S et al (2007) Mech Mater 37:287

    Article  Google Scholar 

  45. Tasker DG, Dick RD, Wilson WH (1997) In: Shock compression of condensed matter1997. American Institute of Physics

  46. Ramesh KT, Narasimhan S (1996) Int J Solids Struct 33(25):3723

    Article  Google Scholar 

  47. Siviour CR et al (2005) Polymer 46:12546

    Article  CAS  Google Scholar 

  48. Chen SR, Kocks UF (1991) High-temperature plasticity in copper polycrystals. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  49. Feltham P, Meakin JD (1957) Phil Mag 2(13):105

    Article  CAS  Google Scholar 

  50. Gracio JJ, Fernandes JV, Schmitt JH (1989) Mater Sci Eng A A118:97

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. William (Tony) Houston (UES, Inc.) for preparing the metallographic specimens and obtaining the photomicrographs of the copper samples, and Mr. Ronald E. Trejo, Mr. John D. Camping, and Ms. Alysa J. Scherer (UDRI) for assisting with low- and medium-rate mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, J.L., Siviour, C.R., Sunny, G. et al. Strain rate-dependant mechanical properties of OFHC copper. J Mater Sci 48, 7134–7141 (2013). https://doi.org/10.1007/s10853-013-7529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7529-9

Keywords

Navigation