Skip to main content
Log in

Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the effect of filler incorporation techniques on the electrical and mechanical properties of reduced graphene oxide (RGO)-filled poly(methyl methacrylate) (PMMA) nanocomposites. Composites were prepared by three different techniques, viz. in situ polymerisation of MMA monomer in presence of RGO, bulk polymerization of MMA in presence of PMMA beads/RGO and by in situ polymerization of MMA in presence of RGO followed by sheet casting. In particular, the effect of incorporation of varying amounts (i.e. ranging from 0.1 to 2 % w/w) of RGO on the electrical, thermal, morphological and mechanical properties of PMMA was investigated. The electrical conductivity was found to be critically dependent on the amount of RGO as well as on the method of its incorporation. The electrical conductivity of 2 wt% RGO-loaded PMMA composite was increased by factor of 107, when composites were prepared by in situ polymerization of MMA in the presence of RGO and PMMA beads, whereas, 108 times increase in conductivity was observed at the same RGO content when composites were prepared by casting method. FTIR and Raman spectra suggested the presence of chemical interactions between RGO and PMMA matrix, whereas XRD patterns, SEM and HRTEM studies show that among three methods, the sheet-casting method gives better exfoliation and dispersion of RGO sheets within PMMA matrix. The superior thermal, mechanical and electrical properties of composites prepared by sheet-casting method provided a facile and logical route towards ultimate target of utilizing maximum fraction of intrinsic properties of graphene sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  3. Eda G, Fanchini G, Chhowalla M (2009) Nat Nanotechnol 4:217

    Article  Google Scholar 

  4. Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: Gomes AD (ed) New polymers for special applications, Intech publisher, Croatia, doi:10.5772/48779; http://www.intechopen.com/download/pdf/38964. Accessed Feb 2013

  5. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Progress in Polym Sci 35:1350

    Article  CAS  Google Scholar 

  6. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  7. Kim H, Ahmad AA, Macosko CW (2010) Macromolecules 43:6515

    Article  CAS  Google Scholar 

  8. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5

    Article  CAS  Google Scholar 

  9. Cai D, Song M (2010) J Mater Chem 20:7906

    Article  CAS  Google Scholar 

  10. Stankovich S, Dikin AD, Dommett GHB, Zimmy EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

  11. Hu HT, Wang XB, Wang JC, Wan L, Liu FM, Zheng H, Chen R, Xu CH (2010) Chem Phys Lett 484:247

    Article  CAS  Google Scholar 

  12. Wang JC, Xu CH, Hu HT, Wan L, Chen R, Zheng H, Liu FM, Zhang M, Shang XP, Wang XB (2011) J Nano Res 13:869

    Article  CAS  Google Scholar 

  13. Wang JC, Wang XB, Xu CH, Zhang M, Shang XP (2011) Polym Int 60:816

    Article  CAS  Google Scholar 

  14. Bao Q, Zhang H, Yang J, Wang S, Tang DY, Jose R, Ramakrishna SC, Lim T, Loh KP (2010) Adv Funct Mater 20:782

    Article  CAS  Google Scholar 

  15. Wang WP, Pan CY (2004) Polym Eng Sci 44:2335

    Article  CAS  Google Scholar 

  16. Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) ACS Appl Mater Interfaces 3:918

    Article  CAS  Google Scholar 

  17. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) Adv Funct Mater 20:3322

    Article  CAS  Google Scholar 

  18. Jang JY, Kim MS, Jeong HM, Shin CM (2009) Compos Sci Technol 69:186

    Article  CAS  Google Scholar 

  19. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Carbon 47:3538

    Article  CAS  Google Scholar 

  20. Jang JY, Jeong HM, Kim BK (2009) Macromol Res 17:626

    Article  CAS  Google Scholar 

  21. Goncalves G, Marques PA, Bdkin I, Singh MK, Gracio J (2010) J Mater Chem 20:9927

    Article  CAS  Google Scholar 

  22. Morimune S, Nishino T, Goto T (2012) ACS Appl Mater Interfaces 4:3596

    Article  CAS  Google Scholar 

  23. Pramoda KP, Hussain H, Koh HM, Tan HR (2010) J Polym Sci Polym Chem 48:4262

    Article  CAS  Google Scholar 

  24. Wang JC, Wang XB, Xu CH, Zhang M, Shang XP (2011) J Appl Polym Sci 122:1866

    Article  CAS  Google Scholar 

  25. Lee SH, Dreyer DR, Piner RD, Park SJ, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Macromol Rapid Comm 31:281

    Article  CAS  Google Scholar 

  26. Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Polymer 51:5846

    Article  CAS  Google Scholar 

  27. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2010) J Mater Chem 20:1982

    Article  CAS  Google Scholar 

  28. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) J Mater Chem 19:7098

    Article  CAS  Google Scholar 

  29. Yang JT, Yan XH, Wu MJ, Chen F, Fei ZD, Zhong MQ (2012) J Nanopart Res 14:717

    Article  Google Scholar 

  30. Pham VH, Dang TT, Kim EJ, Chung JS (2012) ACS Appl Mater Interfaces 4:2630

    Article  CAS  Google Scholar 

  31. Shrivastava NK, Khatua BB (2011) Carbon 49:4571

    Article  CAS  Google Scholar 

  32. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  33. Vuluga D, Thomassin JM, Molenberg I, Huynen I, Bernard G, Christine J, Alexandrea M, Detrembleur C (2011) Chem Commun 47:2544

    Article  CAS  Google Scholar 

  34. Saini P, Choudhary V (2013) J Nanopart Res 15:1415

    Article  Google Scholar 

  35. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) J Phys Chem C 116:13403

    Article  CAS  Google Scholar 

  36. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Mater Chem Phys 113:919

    Article  CAS  Google Scholar 

  37. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2011) Synth Met 161:1522

    Article  CAS  Google Scholar 

  38. Saini P, Choudhary V (2013) Indian J Pure Appl Phys 51:112

    Google Scholar 

Download references

Acknowledgements

The authors thank the University Grant Commission (UGC) for providing financial assistance to one of the authors Mr. Sandeep Nath Tripathi and IIT Delhi for providing all the facilities. The authors also thank the Director CSIR-National Physical Laboratory for extending the electrical characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Choudhary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S.N., Saini, P., Gupta, D. et al. Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48, 6223–6232 (2013). https://doi.org/10.1007/s10853-013-7420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7420-8

Keywords

Navigation