Skip to main content

Advertisement

Log in

Modulating the mechanical properties of photopolymerised polyethylene glycol–polypropylene glycol hydrogels for bone regeneration

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogels formulated from single polymers are often insufficient in terms of their mechanical properties for use as bone substitute materials. Hence, hydrogels synthesised from combinations of polymers have been investigated to optimise the performance of such materials. In the current study, polypropylene glycol dimethacrylate was added to polyethylene glycol dimethacrylate of a variety of molecular weights and photopolymerised to form a series of hydrogels. Polyethylene glycol and polypropylene glycol have the same chemical structure with the exception of a methyl group on the later. Herein, the influence of the methyl group of polypropylene glycol on the mechanical properties of hydrogels for bone regeneration applications is reported. For both unconfined and cyclic compression testing, results demonstrated that the incorporation of PEGDMA into the precursor improves the compression strength of the hydrogels. For example, in unconfined compression tests the Young’s modulus varied between 6.62 ± 0.31 MPa and 8.08 ± 0.81 MPa with the incorporation of PEGDMA 400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewandrowski K-U, D. Gresser J, Wise DL, Trantolo DJ (2000) Biomaterials 21(8):757. doi:10.1016/s0142-9612(99)00179-9

    Article  CAS  Google Scholar 

  2. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Injury 36(3, Supplement):S20. doi:10.1016/j.injury.2005.07.029

    Article  Google Scholar 

  3. Wu C, Fan W, Zhu Y, Gelinsky M, Chang J, Cuniberti G et al (2011) Acta Biomater 7(10):3563. doi:10.1016/j.actbio.2011.06.028

    Article  CAS  Google Scholar 

  4. Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A (2010) J Mater Sci Mater Med 21(7):2237

    Article  CAS  Google Scholar 

  5. Robert PH (1991) Am J Med 91(5, Supplement 2):S23. doi:10.1016/0002-9343(91)90243-q

    Google Scholar 

  6. Hsu WK, Wang JC (2006) Semin Spine Surg 18(1):22. doi:10.1053/j.semss.2006.01.004

    Article  Google Scholar 

  7. Jones JR, Hench LL (2003) Curr Opin Solid State Mater Sci 7(4–5):301. doi:10.1016/j.cossms.2003.09.012

    Article  CAS  Google Scholar 

  8. Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L (2007) Injury 38(Suppl 2(0)):S11. doi:10.1016/s0020-1383(07)80004-0

  9. Tzioupis C, Giannoudis PV (2007) Injury 38(Suppl. 2(0)):S3. doi:10.1016/s0020-1383(07)80003-9

  10. Cypher TJ, Grossman JP (1996) J Foot Ankle Surg 35(5):413. doi:10.1016/s1067-2516(96)80061-5

    Article  CAS  Google Scholar 

  11. Summers BN, Eisenstein SM (1989) J Bone Joint Surg B 71(4):677

    CAS  Google Scholar 

  12. Younger EM, Chapman MW (1989) J Orthop Trauma 3(3):192

    Article  CAS  Google Scholar 

  13. Cook EA, Cook JJ (2009) Clin Podiatr Med Surg 26(4):589. doi:10.1016/j.cpm.2009.07.003

    Article  Google Scholar 

  14. Aghaloo TL, Felsenfeld AL (2012) Current therapy in oral and maxillofacial surgery. W.B. Saunders, p. 19

  15. You Z, Bi X, Fan X, Wang Y. Acta Biomater (0). doi:10.1016/j.actbio.2011.11.004

  16. Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG et al (2007) Biomaterials 28(7):1376. doi:10.1016/j.biomaterials.2006.10.001

    Article  CAS  Google Scholar 

  17. Grimm B, Heyligers IC, Miles AW, Turner IG, Haaren EH, Smit TH et al (2004) Eur Hip Soc Innsbruck Austria 4(2):69

    Google Scholar 

  18. Ratanavaraporn J, Furuya H, Kohara H, Tabata Y (2011) Biomaterials 32(11):2797. doi:10.1016/j.biomaterials.2010.12.052

    Article  CAS  Google Scholar 

  19. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Adv Mater 21(32–33):3307

    Article  CAS  Google Scholar 

  20. Garcia O, Trigo RM, Blanco MD, Teijón J (1994) Biomaterials 15(9):689. doi:10.1016/0142-9612(94)90167-8

    Article  CAS  Google Scholar 

  21. Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA (1994) Proc Natl Acad Sci USA 91(13):5967

    Article  CAS  Google Scholar 

  22. Chinanat W (2011) Procedia Eng 8:286. doi:10.1016/j.proeng.2011.03.053

    Article  Google Scholar 

  23. Devine DM, Higginbotham CL (2005) Eur Polym J 41(6):1272. doi:10.1016/j.eurpolymj.2004.12.022

    Article  CAS  Google Scholar 

  24. Bryant SJ, Anseth KS (2003) J Biomed Mater Res 64A:70

    Article  CAS  Google Scholar 

  25. Yang X, Yang K, Wu S, Chen X, Yu F, Li J et al (2010) Radiat Phys Chem 79(5):606. doi:10.1016/j.radphyschem.2009.12.017

    Article  CAS  Google Scholar 

  26. Services USDoHaH. NTP-Cerhr expert panel report on the reproductive and developmental toxicity of propylene Glycol2003

  27. Hudson JE, Frith JE, Donose BC, Rondeau E, Mills RJ, Wolvetang EJ et al (2010) Biomaterials 31(31):7937. doi:10.1016/j.biomaterials.2010.07.007

    Article  CAS  Google Scholar 

  28. Shintani Y, Iwamoto K, Kitano K (1988) Appl Microbiol Biotechnol 27(5–6):533

    CAS  Google Scholar 

  29. Killion JA, Geever LM, Devine DM, Kennedy JE, Higginbotham CL (2011) J Mech Behav Biomed Mater 4(7):1219. doi:10.1016/j.jmbbm.2011.04.004

    Article  CAS  Google Scholar 

  30. Studer K, Decker C, Beck E, Schwalm R (2003) Prog Org Coat 48(1):92. doi:10.1016/s0300-9440(03)00120-6

    Article  CAS  Google Scholar 

  31. Studer K, Decker C, Beck E, Schwalm R (2003) Prog Org Coat 48(1):101. doi:10.1016/s0300-9440(03)00149-8

    Article  CAS  Google Scholar 

  32. Karaca N, Temel G (2010) J Photochem Photobiol A 209(1):1. doi:10.1016/j.jphotochem.2009.09.017

    Article  CAS  Google Scholar 

  33. Bajpai S, Rai JSP, Nigam I (2011) J Appl Polym Sci 122(1):676

    Article  CAS  Google Scholar 

  34. Bajpai S, Rai JSP, Nigam I (2009) J Appl Polym Sci 112(4):2374

    Article  CAS  Google Scholar 

  35. Lin H, Wagner EV, Swinnea JS, Freeman BD, Pas SJ, Hill AJ et al (2006) J Membr Sci 276(1–2):145. doi:10.1016/j.memsci.2005.09.040

    Article  CAS  Google Scholar 

  36. Kalakkunnath S, Kalika DS, Lin H, Raharjo RD, Freeman BD (2007) Polymer 48(2):579. doi:10.1016/j.polymer.2006.11.046

    Article  CAS  Google Scholar 

  37. Ma G, Yang D, Li Q, Wang K, Chen B, Kennedy JF et al (2010) Carbohydr Polym 79(3):620. doi:10.1016/j.carbpol.2009.09.015

    Article  CAS  Google Scholar 

  38. Lin-Gibson S, Bencherif S, Cooper JA, Wetzel SJ, Antonucci JM, Vogel BM et al (2004) Biomacromolecules 5(4):1280. doi:10.1021/bm0498777

    Article  CAS  Google Scholar 

  39. Smith TJ, Kennedy JE, Higginbotham CL (2009) J Mech Behav Biomed Mater 2(3):264. doi:10.1016/j.jmbbm.2008.10.003

    Article  Google Scholar 

  40. Sagle AC, Ju H, Freeman BD, Sharma MM (2009) Polymer 50(3):756. doi:10.1016/j.polymer.2008.12.019

    Article  CAS  Google Scholar 

  41. Kusuma VA, Matteucci S, Freeman BD, Danquah MK, Kalika DS (2009) J Membr Sci 341(1–2):84. doi:10.1016/j.memsci.2009.05.043

    Article  CAS  Google Scholar 

  42. Murugan R, Ramakrishna S (2005) Compos Sci Technol 65(15–16):2385. doi:10.1016/j.compscitech.2005.07.022

    Article  CAS  Google Scholar 

  43. Devine DM, Geever LM, Higginbotham CL (2005) J Mater Sci 40(13):3429. doi:10.1007/s10853-005-0416-2

    Article  CAS  Google Scholar 

  44. Kim BS, Mooney DJ (1998) Trends Biotechnol 16(5):224

    Article  CAS  Google Scholar 

  45. Hutmacher D, Woodfield T, Dalton P, Lewis J (2008) In: van Clemens B, Peter T, Anders L, Jeffrey H, David FW, Ranieri C et al (eds) Tissue engineering. Academic Press, Burlington, p 403

    Chapter  Google Scholar 

  46. Ingber D, Karp S, Plopper G, Hansen L, Mooney D (1993) In: Frangos JA (ed) Mechanochemical transduction across extracellular matrix and through the cytoskeleton. Academic Press, San Diego, pp 61–79

Download references

Acknowledgements

This study was supported in parts by grants from both the Irish Department of Education (Core Research Strengths Enhancement-Technological Sector Research: Strand III) and the Athlone Institute of Technology Research and Development fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Killion, J.A., Geever, L.M., Devine, D.M. et al. Modulating the mechanical properties of photopolymerised polyethylene glycol–polypropylene glycol hydrogels for bone regeneration. J Mater Sci 47, 6577–6585 (2012). https://doi.org/10.1007/s10853-012-6588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6588-7

Keywords

Navigation