Skip to main content
Log in

AlN nanowires: synthesis, physical properties, and nanoelectronics applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional aluminum nitride (AlN) nanostructures, especially AlN nanowires, have been subjected to numerous investigations due to their unique physical properties and applications ranging from electronics to biomedical. This article reviews the synthesis of AlN nanowires and studies their physical properties and potential nanoelectronics applications. First, the different fabrication techniques used to synthesize AlN nanowires and their growth mechanisms are discussed. Next, the physical properties of AlN nanowires, such as the field emission, transport, photoluminescence, as well as the mechanical and piezoelectric properties are summarized. Finally, the potential applications of AlN nanowires in the field of nanoelectronics are described. Furthermore, this review summarizes the perspectives and outlooks on the future development of AlN nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davis RF (1991) Proc IEEE 79(5):702

    Article  CAS  Google Scholar 

  2. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89(11):5815

    Article  CAS  Google Scholar 

  3. Li J et al (2003) Appl Phys Lett 83(25):5163

    Article  CAS  Google Scholar 

  4. Benjamin MC et al (1994) Appl Phys Lett 64(24):3288

    Article  CAS  Google Scholar 

  5. Bermudez VM et al (1996) J Appl Phys 79(1):110

    Article  CAS  Google Scholar 

  6. Sowers AT et al (1997) Appl Phys Lett 71(16):2289

    Article  CAS  Google Scholar 

  7. Kasu M, Kobayashi N (2000) Appl Phys Lett 76(20):2910

    Article  CAS  Google Scholar 

  8. Grabowski SP et al (2001) Appl Phys Lett 78(17):2503

    Article  CAS  Google Scholar 

  9. Tondare VN et al (2002) Appl Phys Lett 80(25):4813

    Article  CAS  Google Scholar 

  10. Wang H et al (2006) J Mater Sci 41(6):1697. doi:10.1007/s10853-006-2939-6

    Article  CAS  Google Scholar 

  11. Sharma AK, Thareja RK (2000) J Appl Phys 88(12):7334

    Article  CAS  Google Scholar 

  12. Taniyasu Y, Kasu M, Makimoto T (2004) Appl Phys Lett 84(12):2115

    Article  CAS  Google Scholar 

  13. Tang YB, Cong HT, Cheng HM (2006) Appl Phys Lett 89(9):093113-1

    Article  Google Scholar 

  14. Haber JA, Gibbons PC, Buhro WE (1997) J Am Chem Soc 119(23):5455

    Article  CAS  Google Scholar 

  15. Lee KJ, Ahn DH, Kim YS (2000) J Am Ceram Soc 83(5):1117

    Article  CAS  Google Scholar 

  16. Zhang YJ et al (2001) Chem Mater 13(11):3899

    Article  CAS  Google Scholar 

  17. Wu Q et al (2003) J Am Chem Soc 125(34):10176

    Article  CAS  Google Scholar 

  18. Tang YB et al (2006) Appl Phys Lett 89(25):253112-1

    Article  Google Scholar 

  19. Liu C et al (2005) J Am Chem Soc 127(4):1318

    Article  CAS  Google Scholar 

  20. Moya JS et al (1997) Acta Mater 45(8):3089

    Article  CAS  Google Scholar 

  21. Zheng J et al (2007) J Solid State Chem 180(1):276

    Article  CAS  Google Scholar 

  22. Zhang F et al (2008) J Phys Chem C 112(30):11331

    Article  CAS  Google Scholar 

  23. Wu Q et al (2003) J Phys Chem B 107(36):9726

    Article  CAS  Google Scholar 

  24. Tang YB et al (2005) Appl Phys Lett 86(15):153104-1

    Article  Google Scholar 

  25. He JH et al (2006) Adv Mater 18(5):650

    Article  CAS  Google Scholar 

  26. Tang YB et al (2005) Appl Phys Lett 86(23):233104-1

    Article  Google Scholar 

  27. Duan JH et al (2005) J Cryst Growth 283(3–4):291

    Article  CAS  Google Scholar 

  28. Yin LW et al (2005) Adv Mater 17(1):110

    Article  CAS  Google Scholar 

  29. Wu Q et al (2007) J Phys Chem C 111(34):12639

    Article  CAS  Google Scholar 

  30. Zhang F et al (2009) J Phys Chem C 113(10):4053

    Article  CAS  Google Scholar 

  31. Liu J et al (2001) J Mater Res 16(11):3133

    Article  CAS  Google Scholar 

  32. Wu Q et al (2004) Diam Relat Mater 13(1):38

    Article  CAS  Google Scholar 

  33. Yuan Z-H et al (2009) Nanoscale Res Lett 4(10):1126

    Article  CAS  Google Scholar 

  34. Balasubramanian C et al (2004) Nanotechnology 15(3):370

    Article  CAS  Google Scholar 

  35. Shen LH et al (2006) Appl Phys A 84(1–2):73

    Article  CAS  Google Scholar 

  36. Shen L et al (2008) J Alloy Compd 465(1–2):562

    Article  CAS  Google Scholar 

  37. Shen L et al (2010) Appl Phys A 99(1):111

    Article  CAS  Google Scholar 

  38. Tian Y et al (2007) Diam Relat Mater 16(2):302

    Article  CAS  Google Scholar 

  39. Tang CC et al (2001) Chem Phys Lett 333(1–2):12

    Article  CAS  Google Scholar 

  40. Wu Q et al (2003) J Mater Chem 13(8):2024

    Article  CAS  Google Scholar 

  41. Su J et al (2005) Appl Phys Lett 86(1):013105-1

    Article  Google Scholar 

  42. Cimalla V et al (2006) Phys Status Solidi B 243(7):1476

    Article  CAS  Google Scholar 

  43. Wu H-M et al (2009) Ferroelectrics 383:73

    Article  CAS  Google Scholar 

  44. Wu H-M, Liang J-Y (2009) Ferroelectrics 383:95

    Article  CAS  Google Scholar 

  45. Liu F et al (2011) Nanoscale 3(2):610

    Article  CAS  Google Scholar 

  46. Yu L et al (2011) J Cryst Growth 334(1):57

    Article  CAS  Google Scholar 

  47. Zhao Q et al (2005) Appl Phys Lett 86(19):193101-1

    Article  Google Scholar 

  48. Duan JH et al (2005) J Phys Chem B 109(9):3701

    Article  CAS  Google Scholar 

  49. Zheng J et al (2008) ACS Nano 2(1):134

    Article  CAS  Google Scholar 

  50. Lei M et al (2007) Mater Sci Eng B 143(1–3):85

    Article  CAS  Google Scholar 

  51. Lei M et al (2008) J Alloy Compd 459(1–2):338

    Article  CAS  Google Scholar 

  52. Lei M et al (2009) J Eur Ceram Soc 29(1):195

    Article  CAS  Google Scholar 

  53. Yazdi GR, Syvajarvi M, Yakimova R (2007) Appl Phys Lett 90(12):123103-1

    Article  Google Scholar 

  54. Yazdi GR et al (2009) Nanotechnology 20(49):495304

    Article  CAS  Google Scholar 

  55. Yu L et al (2007) Diam Relat Mater 16(8):1636

    Article  CAS  Google Scholar 

  56. Kim HW, Kebede MA, Kim HS (2009) Appl Surf Sci 255(16):7221

    Article  CAS  Google Scholar 

  57. Landre O et al (2010) Appl Phys Lett 96(6):061912-1

    Article  Google Scholar 

  58. Yu L et al (2011) Mater Lett 65(10):1499

    Article  CAS  Google Scholar 

  59. Lv H et al (2007) J Appl Phys 101(5):053526

    Article  Google Scholar 

  60. Lv H-M et al (2007) Chin Phys 16(9):2814

    Article  CAS  Google Scholar 

  61. Paul RK et al (2008) Mater Chem Phys 112(2):562

    Article  CAS  Google Scholar 

  62. Xu CK et al (2003) Phys Status Solidi A 198(2):329

    Article  CAS  Google Scholar 

  63. Tang YB et al (2007) J Mater Res 22(10):2711

    Article  CAS  Google Scholar 

  64. Iijima S (1991) Nature 354(6348):56

    Article  CAS  Google Scholar 

  65. Shen LH et al (2005) Chin Phys Lett 22(12):3192

    Article  CAS  Google Scholar 

  66. Wagner RS, Ellis WC (1964) Appl Phys Lett 4(5):89

    Article  CAS  Google Scholar 

  67. Haber JA, Gibbons PC, Buhro WE (1998) Chem Mater 10(12):4062

    Article  CAS  Google Scholar 

  68. Lee ST et al (1999) J Mater Res 14(12):4503

    Article  CAS  Google Scholar 

  69. Zhang YF et al (2000) Phys Rev B 61(7):4518

    Article  CAS  Google Scholar 

  70. Kasu M, Kobayashi N (2001) Appl Phys Lett 79(22):3642

    Article  CAS  Google Scholar 

  71. Fang X et al (2008) J Mater Chem 18(5):509

    Article  CAS  Google Scholar 

  72. Kai Y et al (2003) Jpn J Appl Phys Part 2 42(3A):L229

    Article  CAS  Google Scholar 

  73. Huang HM et al (2010) Appl Phys Lett 96(6):062104-1

    Google Scholar 

  74. Cui Y et al (2000) J Phys Chem B 104(22):5213

    Article  CAS  Google Scholar 

  75. Taniyasu Y, Kasu M, Makimoto T (2006) Nature 441(7091):325

    Article  CAS  Google Scholar 

  76. Tang Y-B et al (2011) ACS Nano 5(5):3591

    Article  CAS  Google Scholar 

  77. Cox GA et al (1967) J Phys Chem Solids 28(4):543

    Article  CAS  Google Scholar 

  78. Mattila T, Nieminen RM (1996) Phys Rev B 54(23):16676

    Article  CAS  Google Scholar 

  79. Berzina B et al (2002) Radiat Eff Defects Solids 157(6–12):1089

    Article  CAS  Google Scholar 

  80. Slack GA et al (2002) J Cryst Growth 246(3–4):287

    Article  CAS  Google Scholar 

  81. Kazan M et al (2005) J Appl Phys 98(10):103529-1

    Article  Google Scholar 

  82. Tang Y et al (2007) Diam Relat Mater 16(3):537

    Article  CAS  Google Scholar 

  83. Xie T et al (2004) J Phys Condens Matter 16(9):1639

    Article  CAS  Google Scholar 

  84. Chen HT et al (2008) J Phys D 41(2):025101

    Article  Google Scholar 

  85. Ji XH et al. (2008) 2008 2nd IEEE international nanoelectronics conference, vol. 1–32008, p 206

  86. Rigutti L et al (2010) Phys Status Solidi A 207(6):1323

    Article  CAS  Google Scholar 

  87. Rigutti L et al (2010) Nano Lett 10(8):2939

    Article  CAS  Google Scholar 

  88. Li Y et al (2006) Nano Lett 6(7):1468

    Article  CAS  Google Scholar 

  89. Zhou Z et al (2007) Nanotechnology 18(42):424023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-Tye Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenry, Yong, KT. & Yu, S.F. AlN nanowires: synthesis, physical properties, and nanoelectronics applications. J Mater Sci 47, 5341–5360 (2012). https://doi.org/10.1007/s10853-012-6388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6388-0

Keywords

Navigation