Skip to main content
Log in

Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al(OH)3 functionalized graphene composites (Al–GO) were prepared using a simple sol–gel method. In this protocol, graphene oxide (GO) was prepared according to the Hummers method and functionalized to enhance its reactivity with aluminum isopropoxide by a LiAlH4 treatment. The functionalized graphene sheets were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. These analyses confirmed that GO had been fabricated and the Al(OH)3 layer could have a homogeneous distribution with large and dense coverage onto GO sheets. In addition, the thermal and electrical conductivity of the epoxy composites with GO and Al–GO fillers were measured. The thermal conductivities of the composites with graphene-based fillers were enhanced by the addition of fillers. In particular, the thermal conductivity of GO/epoxy composite containing 3 wt% was approximately two times higher than that of pure epoxy resin. In addition, the electrical conductivity of Al–GO embedded composites degenerated compared to GO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He Y, Moreira BE, Overson A, Nakamura SH, Bider C, Briscoe JF (2000) Thermochim Acta 357–358:1

    Article  Google Scholar 

  2. Viswanath R, Wakharkar V, Watwe A, Lebonheur V (2000) Intel Technol J Q3:1

    Google Scholar 

  3. Yunsheng X, Xingcheng L, Chung DDL (2002) J Electron Packag 124:188

    Article  Google Scholar 

  4. Wolff EG, Schneider DA (1998) Int J Heat Mass Transfer 41:3469

    Article  CAS  Google Scholar 

  5. Kim P, Shi L, Majumdar A, McEuen PL (2001) Phys Rev Lett 87:215502

    Article  CAS  Google Scholar 

  6. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Appl Phys Lett 89:133102

    Article  Google Scholar 

  7. Huang H, Liu CH, Wu Y, Fan S (2005) Adv Mater 17:1652

    Article  CAS  Google Scholar 

  8. Thostenson ET, Li C, Chou T-W (2005) Compos Sci Technol 65:491

    Article  CAS  Google Scholar 

  9. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132

    Article  CAS  Google Scholar 

  10. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Nano Lett 8:902

    Article  CAS  Google Scholar 

  11. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Appl Phys Lett 92:151911

    Article  Google Scholar 

  12. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) ACS Nano 3:3884

    Article  CAS  Google Scholar 

  13. Yu A, Ramesh P, Sun X, Vekyarova E, Itkis ME, Haddon RC (2008) Adv Mater 20:4740

    Article  CAS  Google Scholar 

  14. Kim H, Miura Y, Macosko CW (2010) Chem Mater 22:3441

    Article  CAS  Google Scholar 

  15. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ et al (2006) Nature 442:282

    Article  CAS  Google Scholar 

  16. Steurer P, Wissert R, Thomann R, Muelhaupt R (2009) Macromol Rapid Commun 30:316

    Article  CAS  Google Scholar 

  17. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Macromol Chem Phys 209:2487

    Article  CAS  Google Scholar 

  18. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Polym Int 58:412

    Article  CAS  Google Scholar 

  19. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111:7565

    Article  CAS  Google Scholar 

  20. Yu J, Huang X, Wu C, Jiang P (2011) IEEE Trans Dielectr Electr Insul 18:478

    Article  CAS  Google Scholar 

  21. Du X, Skachko I, Barker A, Andrei EY (2008) Nat Nanotechnol 3:491

    Article  CAS  Google Scholar 

  22. Imai T, Sawa F, Nakano T, OzaKi T, Shimizu T, Kozako M et al (2006) IEEE Trans Dielectr Electr Insul 13:319

    Article  CAS  Google Scholar 

  23. Xu Y, Chung DDL, Mroz C (2001) Compos Part A 32:1749

    Article  Google Scholar 

  24. Sim LC, Ramamam SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430:155

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) J Am Soc 80:1339

    Article  CAS  Google Scholar 

  26. Hernadi K, Couteau E, Seo JW, Forro L (2003) Langmuir 19:7026

    Article  CAS  Google Scholar 

  27. Atrens A, Lim AS (1990) Appl Phys A 51:411

    Article  Google Scholar 

  28. Cardinaud CH, Lemperiere G, Peignon MC, Jouan PY (1993) Appl Surf Sci 68:595

    Article  Google Scholar 

  29. Singamsetty CS, Pittman CU, Booth GL, He GR, Gardner SD (1995) Carbon 33:587

    Article  Google Scholar 

  30. Beguin F, Rashkov I, Mamolova N, Benoit R, Erre R, Delpeux S (1998) Eur Polym J 34:905

    Article  Google Scholar 

  31. Liao HM, Sodhi RNS, Coyle TW (1993) J Vac Sci Technol A 11:2681

    Article  CAS  Google Scholar 

  32. Nylund A, Olefjord I (1994) Surf Interf Anal 22:283

    Article  Google Scholar 

  33. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL et al (2010) Carbon 48:592

    Article  CAS  Google Scholar 

  34. Lin C, Chung DDL (2009) Carbon 47:295

    Article  CAS  Google Scholar 

  35. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767

    Article  CAS  Google Scholar 

  36. Ganguli S, Roy AK, Anderson DP (2008) Carbon 46:806

    Article  CAS  Google Scholar 

  37. Tu ST, Cai WZ, Yin Y, Ling X (2005) J Compos Mater 39:617

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Seoul R&BD program (No. PA090933).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooheon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Im, H., Kim, Jm. et al. Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites. J Mater Sci 47, 1418–1426 (2012). https://doi.org/10.1007/s10853-011-5922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5922-9

Keywords

Navigation