Skip to main content

Advertisement

Log in

The structure and mechanics of bone

  • Anniversary Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The four levels of hierarchy considered in this review are the nanoscale (the mineralised collagen fibre and the extrafibrillar mineral), the microscale (the structure as visible under the microscope), the mesoscale (particularly the relationship between cancellous and cortical bone) and the whole bone scale. The explosion of papers at the nanoscale precludes any settling on one best model. At the microscale the inadequacies of linear elastic fracture mechanics, the importance of R-curves for understanding what is happening to cracks in bone, and the effect of different histological types are emphasised. At the mesoscale the question of whether cancellous bone is anything but compact bone with a lot of holes in it, and the question of whether cancellous bone obeys Wolff’s ‘law’ is discussed. The problem of not damaging bone when examining it with X-rays is mentioned (though not solved). At the whole bone level the relative roles of genetics and the external forces and the question of the way in which bones are loaded, in bending or compression, is raised, and the question of size effects, long underestimated or ignored by the bone community, is discussed. Finally, the question of why there are hierarchies at all in bone is addressed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Currey JD (2010) J Mech Behav Biomed Mater 3:357

    Article  CAS  Google Scholar 

  2. Weiner S, Wagner HD (1998) Annu Rev Mater Sci 28:271

    Article  CAS  Google Scholar 

  3. Currey JD (2006) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  4. Taylor ME, Tanner KE, Freeman MAR, Yettram AL (1996) Med Eng Phys 18:122

    Article  CAS  Google Scholar 

  5. Sverdlova NS, Witzel U (2010) J Biomech 43:387

    Article  Google Scholar 

  6. Edwards WB, Gillette JC, Thomas JM, Derrick TR (2008) Clin Biomech 23:1269

    Article  Google Scholar 

  7. Yang PF, Brüggemann G-P, Rittweger J (2011) J Musculoskelet Neuronal Interact 11:8

    CAS  Google Scholar 

  8. George WT, Vashishth D (2005) J Orthop Res 23:1047

    Article  CAS  Google Scholar 

  9. Nikolov S, Raabe D (2008) Biophys J 94:4220

    Article  CAS  Google Scholar 

  10. Bonar LC, Lees S, Mook HA (1985) J Mol Biol 181:265

    Article  CAS  Google Scholar 

  11. Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) J Mater Sci Mater Med 13:333

    Article  CAS  Google Scholar 

  12. Buehler MJ (2007) Nanotechnology. doi:10.1088/0957-4484/18/29/295102

  13. Buehler MJ (2007) J Mater Sci 42:8765. doi:10.1007/s10853-007-1952-8

    Article  CAS  Google Scholar 

  14. Fritsch A, Hellmich C (2007) J Theor Biol 244:597

    Article  CAS  Google Scholar 

  15. Fritsch A, Hellmich C, Dormieux L (2009) J Theor Biol 260:230

    Article  CAS  Google Scholar 

  16. Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Nano Lett. doi:10.1021/nl10394u

  17. Gupta HS, Seto J, Wagermaier ZaslanskyP, Boesecke P, Fratzl P (2006) Proc Natl Acad Sci USA 103:17741

    Article  CAS  Google Scholar 

  18. Luo Q, Nakade R, Dong X, Rong Q, Wang X (2011) J Mech Behav Biomed Mater. doi:10.1016/j.jmbbm.2011.02.003

  19. Taylor D (2007) J Mater Sci 42:8911. doi:10.1007/s10853-007-1698-3

    Article  CAS  Google Scholar 

  20. Zhang Z, Zhang Y-W, Gao H (2011) Proc R Soc B 278:519

    Article  Google Scholar 

  21. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, Marshall SJ, Ritchie RO, Derynck R, Alliston T (2005) Proc Natl Acad Sci USA 102:18813

    Article  CAS  Google Scholar 

  22. Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, Humphrey MB, Chin EN, Porter AE, Butcher K, Ritchie RO, Schneider RA, Lalwani A, Derynck R, Marshall GW, Marshall SJ, Lustig L, Alliston T (2010) EMBO Rep 11:765

    Article  CAS  Google Scholar 

  23. Viswanath B, Ravishankar N (2008) Biomaterials 29:4855

    Article  CAS  Google Scholar 

  24. Hu Y–Y, Rawal A, Schmidt-Rohr K (2010) Proc Natl Acad Sci USA 107:22425

    Article  CAS  Google Scholar 

  25. Gao H, Baohua J, Jäger IL, Arzt E, Fratzl P (2003) Proc Natl Acad Sci USA 100:5597

    Article  CAS  Google Scholar 

  26. Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) Chem Phys Lett 390:413

    Article  CAS  Google Scholar 

  27. Ballarini R, Kayacan R, Ulm F-J, Belytschko T, Heuer A (2005) Int J Fract 135:187

    Article  Google Scholar 

  28. Currey J (2004) J Theor Biol 231:569

    Article  Google Scholar 

  29. Rogers KD, Zioupos P (1999) J Mater Sci Lett 18:651

    Article  CAS  Google Scholar 

  30. Bonfield W, Clark EA (1973) J Mater Sci 8:1590. doi:10.1007/BF00754894

    Article  CAS  Google Scholar 

  31. Locke M (2004) J Morph 262:546

    Article  Google Scholar 

  32. Zylberberg L (2004) C R Palevol 3:591

    Article  Google Scholar 

  33. Yang QD, Cox BN, Nalla RK, Ritchie RO (2006) Bone 38:878

    Article  CAS  Google Scholar 

  34. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005) Biomaterials 26:217

    Article  CAS  Google Scholar 

  35. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Bone 35:1240

    Article  CAS  Google Scholar 

  36. Akkus O, Rimnac CM (2001) J Biomech 34:757

    Article  CAS  Google Scholar 

  37. Taylor D, Hazenberg JG, Lee CT (2007) Nat Mater 6:263

    Article  CAS  Google Scholar 

  38. Liu D, Wagner HD, Weiner S (2000) J Mater Sci Mater Med 11:49

    Article  CAS  Google Scholar 

  39. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) J Biomech 32:437

    Article  CAS  Google Scholar 

  40. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone 42:456

    Article  CAS  Google Scholar 

  41. Hodgskinson R, Currey JD (1992) J Mater Sci Mater Med 3:377

    Article  Google Scholar 

  42. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Annu Rev Biomed Eng 3:307

    Article  CAS  Google Scholar 

  43. van Rietbergen B, Huiskes R (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, FL, p 15.1

    Google Scholar 

  44. Cowin SC (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, FL, p 30.1

    Google Scholar 

  45. Cowin SC (ed) (2001) Bone mechanics handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  46. Skedros JG, Baucom SL (2007) J Theor Biol 244:15

    Article  Google Scholar 

  47. Barth HD, Launey ME, MacDowell AA, Ager JW III, Ritchie RO (2010) Bone 46:1475

    Article  Google Scholar 

  48. Alexander RM (1981) Sci Prog 67:109

    CAS  Google Scholar 

  49. Lanyon LE, Smith RN (1970) Acta Orthop Scand 41:238

    Article  CAS  Google Scholar 

  50. Lanyon LE, Bourn S (1979) J Bone Jt Surg 61-A:263

    Google Scholar 

  51. Alexander RM, Kosoff B (1994) Bones: the unity of form and function. Weidenfeld and Nicholson, London

    Google Scholar 

  52. de Panafieu J-B, Gries P (2007) Evolution [in action]. Thames and Hudson, London

    Google Scholar 

  53. Murray PDF (1936) Bones, a study of the development and structure of the vertebrate skeleton. Cambridge University Press, Cambridge

    Google Scholar 

  54. Hall BK (1970) Biol Rev 45:455

    Article  CAS  Google Scholar 

  55. Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) J Exp Biol 212:3985

    Article  CAS  Google Scholar 

  56. Chapman N (1991) Deer. Whittet Books, London

    Google Scholar 

  57. Taylor D (2000) J Theor Biol 206:299

    Article  CAS  Google Scholar 

  58. Bigley RF, Gibeling JC, Stover SM, Hazelwood SJ, Fyrhie DP, Martin RB (2007) J Biomech 40:3548

    Article  CAS  Google Scholar 

  59. Le J-L, Bažant ZP, Bazant MZ (2011) J Mech Phys Solids 59:1291

    Article  CAS  Google Scholar 

  60. Le J-L, Bažant ZP (2011) J Mech Phys Solids 59:1311

    Google Scholar 

  61. Cotterell B (2010) Fracture and life. Imperial College Press, London

    Book  Google Scholar 

  62. Morel S, Dourado N (2011) Int J Solid Struct 48:1403

    Google Scholar 

  63. Carpinteri A, Pugno N (2005) Nat Mater 4:421

    Article  CAS  Google Scholar 

  64. Sen D, Buehler MJ (2011) Sci Rep. doi:10.1038/srep00035

  65. De Leeuw NH (2002) Phys Chem Chem Phys 4:3865

    Article  Google Scholar 

  66. Schepers T, Brickmann J, Hochrein O, Zahn D (2007) Z Anorg Allg Chem 633:411

    Article  CAS  Google Scholar 

  67. Reilly DT, Burstein AH (1975) J Biomech 8:393

    Article  CAS  Google Scholar 

  68. Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG (1985) J Biomech 18:61

    Article  CAS  Google Scholar 

  69. Bourgery JM (1832) Traité complet de l’anatomie de l’homme I Osteologie. Delaunay, Paris

    Google Scholar 

  70. von Meyer GH (1867) Arch Anat Physiol Wiss Med 34:615

    Google Scholar 

  71. Roesler H (1987) J Biomech 20:1025

    Article  CAS  Google Scholar 

  72. Wolff J (1870) Virchows Arch path Anat Physiol 50:343

    Google Scholar 

  73. Roux W (1881) Der Kampfe der Teile im Organismus. Engelmann, Leipzig

    Google Scholar 

  74. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirchswald, Berlin

    Google Scholar 

  75. Triepel H (1922) Die Architekturen der menslichen Knochenspongiosa. Bergmann, Munich

    Google Scholar 

  76. D’Arcy-Thompson W (1942) On growth and form. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  77. Wolff J (1986) The law of bone remodelling. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Currey.

Appendix

Appendix

Panel 1: Enhancements in technology and new technologies that have occurred in the last 30 years or so

Improvements in already adopted methods

  • Computer-assisted image analysis

  • Light microscopes increasingly sophisticated

  • Mechanical testing machines driven by computers (an advance?)

  • Transmission and scanning electron microscopes are increasingly sophisticated

  • Vast improvements in the power and sophistication of computers

Methods now adopted by the bone community, or new methods

  • Atomic force microscopy

  • Computational chemistry, including quantum mechanical methods

  • Environmental chambers

  • Finite element analysis

  • Micromilling

  • Microtomography

  • Nanoindentation

  • Non-contact optical deformation mapping

  • Scanning confocal microscopy

  • Shearography

  • Spectroscopy (FTIR, Raman, NMR)

People should remember that new techniques bring new hazards: environmental chambers may mislead people into thinking their specimens are truly in a physiological state; images can be tweaked in Photoshop (a very bad practice); papers on Finite Element Analysis are often what Peter Medawar once called methodological chambers of horrors; not having hard copy output from computers can, indeed often does, lead to archiving problems, and so on.

Panel 2

 

Adult human haversian

Bovine fibrolamellar

Whale tympanic bulla

Mesoplodon rostrum

Dry Deer antler

Wet Deer femur

Young’s modulus (GPa)

13–18

11–26

35

45

17

22

Shear modulus (GPa)

3.3

5

Tensile strength (MPa)

50–130

30–170

30

Low

Tensile yield (MPa)

110

160

Low

Ultimate tensile strain

0.007–0.030

0.002–0.030

0.002

Low

High

So so

Compressive strength (MPa)

130–200

Bending strength (MPa)

240

33

50

350

260

Shear strength (MPa)

70

65

 

Impact absorption

So so

So so

Poor

Poor

High

So so

  1. Characteristic mechanical properties of cortical bone. This table merely gives some idea of the mechanical properties of cortical bone and should not be used for reference. Compare the ‘Dry Deer antler’ with the ‘Wet Deer femur’, for they were measured on exactly the same type of specimens. For more definitive information, you should refer to papers and books such as the following: [3, 28, 45, 55, 67, 68]

Panel 3

People who wish to examine the history of the so called Wolff’s law, which is a concept without a legal basis, and which is still used all the time without much thought, might like to follow some of the references in this time-line.

  • 1832 Bourgery is probably the first to publish [69] (in French) regarding the architectural structure of cancellous bone, though this had been known in a general way for centuries

  • 1867 von Meyer publishes a paper [70] (in German) showing the supposed relationship between the directions of the trabeculae in the proximal human femur and a crane devised by Culmann

  • 1870 Wolff ‘took charge of the subject’ [71] and published a paper setting out his ideas in detail [72] (in German). In the years afterwards he was very aggressive in defending his views [71]

  • 1881 Roux published (in German) a book that was really about functional adaptation [73]. This got conflated [71] with Wolff’s overspecific mathematical theory about the way in which cancellous bone was arranged, into ‘Wolff’s law’

  • 1892 Wolff publishes a book [74] (in German) summarising his views (‘often quoted hardly read’ [71])

  • 1922 Triepel publishes a book [75] (in German) about the architecture of human cancellous bone that lists 20 reasons for rebutting Wolff’s ideas

  • 1942 D’Arcy Thompson publishes (in English) a rather colourful account [76] of how Culmann came to see von Meyer’s dissection of the end of a bone and said ‘That’s my crane!’

  • 1986 [77] English language translation of Wolff’s classic work is published

  • 1987 Roesler publishes an article [71] (in English) in the course of which he essentially rebuts the concept of Wolff’s law as being anything of the sort

  • 2001 Cowin publishes (in English) a good, and one would have hoped final, rebuttal of Wolff’s ‘law’ [44] Alas, it was not to be!

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currey, J.D. The structure and mechanics of bone. J Mater Sci 47, 41–54 (2012). https://doi.org/10.1007/s10853-011-5914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5914-9

Keywords

Navigation