Skip to main content
Log in

Circularly polarized luminescence (CPL) characteristics of hydrophobic pyrene derivatives/γ-cyclodextrin (γ-CD) complexes in aqueous solution dissolved by grinding

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Circularly polarized luminescence (CPL) organic dyes are currently receiving a great interest, but there are still not many reported observations of CPL spectra of hydrophobic dyes from aqueous solution. We have prepared hydrophobic pyrene derivatives and dissolved them into aqueous solutions with γ-cyclodextrin (γ-CD) by using grinding technique. Among these derivatives, (pyrene-1-carbonyl)serine (PySer) forms a spatially restricted dimer in the hydrophobic chiral cavity of γ-CD and exhibits excimer emission with a high quantum yield of Φf = 0.68. In addition, circular dichroism and CPL signals were induced for the complex. The strong gCPL value of gCPL = + 2.2 × 10−3 was obtained, which may be attributed to the interaction between the hydroxyl groups in the side chain of PySer with those of γ-CD and it strengthens the chiral dimeric structure.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maeda, H., Bando, Y.: Recent progress in research on stimuli-responsive circularly polarized luminescence based on π-conjugated molecules. Pure Appl. Chem. 85, 1967–1978 (2013)

    Article  CAS  Google Scholar 

  2. Sánchez Carnerero, E.M., Agarrabeitia, A.R., Moreno, F., Maroto, B.L., Muller, G., Ortiz, M.J., de la Moya, S.: Circularly polarized luminescence from simple organic molecules. Chem. Eur. J. 21, 13488–13500 (2015)

    Article  Google Scholar 

  3. Kumar, J., Nakashima, T., Kawai, T.: Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J. Phys. Chem. Lett. 6, 3445–3452 (2015)

    Article  CAS  Google Scholar 

  4. Longhi, G., Castiglioni, E., Koshoubu, J., Mazzeo, G., Abbate, S.: Circularly polarized luminescence: A review of experimental and theoretical aspects. Chirality 28, 696–707 (2016)

    Article  CAS  Google Scholar 

  5. Tanaka, H., Inoue, Y., Mori, T.: Circularly polarized luminescence and circular dichroisms in small organic molecules: Correlation between excitation and emission dissymmetry factors. ChemPhotoChem 2, 386–402 (2018)

    Article  CAS  Google Scholar 

  6. Pop, F., Zigon, N., Avarvari, N.: Main-group-based electro- and photoactive chiral materials. Chem. Rev. 119, 8435–8478 (2019)

    Article  CAS  Google Scholar 

  7. Sato, T., Tajima, N., Ueno, H., Harada, T., Fujiki, M., Imai, Y.: Binaphthyl luminophores with triphenylsilyl groups: sign inversion of circularly polarized luminescence and circular dichroism. Tetrahedron 72, 7032–7038 (2016)

    Article  CAS  Google Scholar 

  8. Kaji, D., Okada, H., Hara, N., Kondo, Y., Suzuki, S., Miyasaka, M., Fujiki, M., Imai, Y.: Non-classically controlled sign in a 1.6 tesla magnetic circularly polarized luminescence of three pyrenes in a chloroform and a PMMA film. Chem. Lett. 49, 674–676 (2020)

    Article  CAS  Google Scholar 

  9. Kitatobe, T., Mimura, Y., Tsujimoto, S., Tajima, N., Fujiki, M., Imai, Y.: Circularly polarized luminescence from open- and closed-style axially chiral amphipathic binaphthyl fluorophores in water. Tetrahedron 73, 6856–6862 (2017)

    Article  CAS  Google Scholar 

  10. Okano, K., Taguchi, M., Fujiki, M., Yamashita, T.: Circularly polarized luminescence of rhodamine B in a supramolecular chiral medium formed by a vortex flow. Angew. Chem. Int. Ed. 50, 12474–12477 (2011)

    Article  CAS  Google Scholar 

  11. Bradberry, S., Savyasachi, A., Peacock, R., Gunnlaugsson, T.: Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels. Faraday Discuss. 185, 413–431 (2015)

    Article  CAS  Google Scholar 

  12. Wu, T., Prusa, J., Kessler, J., Dracinsky, M., Valenta, J., Bour, P.: Detection of sugars via chirality induced in europium(III) compounds. Anal. Chem. 88, 8878–8885 (2016)

    Article  CAS  Google Scholar 

  13. Hayashi, K., Miyaoka, Y., Ohishi, Y., Uchida, T., Iwamura, M., Nozaki, K., Inouye, M.: Observation of circularly polarized luminescence of the excimer from two perylene cores in the form of [4]rotaxane. Chem. Eur. J. 24, 14613–14616 (2018)

    Article  CAS  Google Scholar 

  14. Kobayashi, N., Saito, R., Hino, H., Hino, Y., Ueno, A., Osa, T.: Fluorescence and induced circular dichroism studies on host–guest complexation between γ-cyclodextrin and pyrene. J. Chem. Soc., Perkin Trans. 2, 1031–1035 (1983)

    Article  Google Scholar 

  15. Kano, K., Matsumoto, H., Hashimoto, S., Sisido, M., Imanishi, Y.: A chiral pyrene excimer in γ-cyclodextrin cavity. J. Am. Chem. Soc. 107, 6117–6118 (1985)

    Article  CAS  Google Scholar 

  16. Kano, K., Matsumoto, H., Yoshimura, Y., Hashimoto, S.: Binding sites of pyrene and related compounds and chiral excimer formation in the cavities of cyclodextrins and branched cyclodextrins. J. Am. Chem. Soc. 110, 204–209 (1988)

    Article  CAS  Google Scholar 

  17. Ueno, A., Suzuki, I., Osa, T.: Formation of pyrene excimer in an association dimer of pyrene-appended γ-cyclodextrin. J. Chem. Soc. Chem. Commun. (1988). https://doi.org/10.1039/C39880001373

    Article  Google Scholar 

  18. Ohishi, Y., Inouye, M.: Circularly polarized luminescence from pyrene excimers. Tetrahedron Lett. 60, 151232 (2019)

    Article  CAS  Google Scholar 

  19. Inouye, M., Hayashi, K., Yonenaga, Y., Itou, T., Fujimoto, K., Uchida, T., Iwamura, M., Nozaki, K.: A doubly alkynylpyrene-threaded [4] rotaxane that exhibits strong circularly polarized luminescence from the spatially restricted excimer. Angew. Chem. Int. Ed. 53, 14392–14396 (2014)

    Article  CAS  Google Scholar 

  20. Harada, A., Nozakura, S.: Cooperative inclusion of sodium 1-pyrenesulfonate by γ-cyclodextrin. Polym. Bull. 8, 141–146 (1982)

    Article  CAS  Google Scholar 

  21. Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal. 113, 226–238 (2015)

    Article  CAS  Google Scholar 

  22. Jug, M., Mura, P.A.: Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics 10, 189–210 (2018)

    Article  CAS  Google Scholar 

  23. Tsuchiya, Y., Shiraki, T., Matsumoto, T., Sugikawa, K., Sada, K., Yamano, A., Shinkai, S.: Supramolecular dye inclusion single crystals created from 2,3,6-trimethyl‐β‐cyclodextrin and porphyrins. Chem. Eur. J. 18, 456–465 (2012)

    Article  CAS  Google Scholar 

  24. Kano, K., Nishiyabu, R., Asada, T., Kuroda, Y.: Static and Dynamic Behavior of 2:1 Inclusion Complexes of Cyclodextrins and Charged Porphyrins in Aqueous Organic Media. J. Am. Chem. Soc. 124, 9937–9944 (2002)

    Article  CAS  Google Scholar 

  25. Kawaguchi, Y., Harada, A.: An Electric Trap: A New Method for Entrapping Cyclodextrin in a Rotaxane Structure. J. Am. Chem. Soc. 122, 3797–3798 (2000)

    Article  CAS  Google Scholar 

  26. Kano, K., Takenoshita, I., Ogawa, T.: Fluorescence quenching of pyrene and naphthalene in aqueous cyclodextrin solutions. Evidence of three-component complex formation. J. Phys. Chem. 86, 1833–1838 (1982)

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16, Revision D.01. Gaussian Inc., Wallingford CT (2016)

    Google Scholar 

  28. Adamo, C., Jacquemin, D.: The calculations of excited-state properties with time-dependent density functional theory. Chem. Soc. Rev. 42, 845–856 (2013)

    Article  CAS  Google Scholar 

  29. Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B37, 785–789 (1988)

    Article  Google Scholar 

  30. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5646 (1993)

    Article  CAS  Google Scholar 

  31. Cances, E., Mennucci, B., Tomasi, J.: A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041 (1997)

    Article  CAS  Google Scholar 

  32. Cossi, M., Barone, V., Mennucci, B., Tomasi, J.: Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 286, 253–260 (1998)

    Article  CAS  Google Scholar 

  33. Mennucci, B., Tomasi, J.: Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997)

    Article  CAS  Google Scholar 

  34. Berova, N., Nakanishi, K., Woody, R.W. (eds.): Circular Dichroism Principles and Applications, 2nd edn. Wiley-VCH, New York (2004)

  35. Zhang, Y., Yang, D., Han, J., Zhou, J., Jin, Q., Liu, M., Duan, P.: Circularly polarized luminescence from a pyrene-cyclodextrin supra-dendron. Langmuir 34, 5821–5830 (2018)

    Article  CAS  Google Scholar 

  36. Schneider, H.J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrin and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS KAKENHI Grant Number JP20K05567, the “ZE Research Program IAE(ZE2021A-04)”, the Murata Science Foundation, the Nara Women’s University Intramural Grant for Project Research and JST CREST (JPMJCR2001), Japan. The computations were performed using the resources at the Research Center for Computational Science, Okazaki, Japan. We thank Dr. Naokazu Yoshikawa for his assistance of X-ray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takashima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1689.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawai, M., Matsumoto, S., Mimura, Y. et al. Circularly polarized luminescence (CPL) characteristics of hydrophobic pyrene derivatives/γ-cyclodextrin (γ-CD) complexes in aqueous solution dissolved by grinding. J Incl Phenom Macrocycl Chem 102, 133–142 (2022). https://doi.org/10.1007/s10847-021-01108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01108-z

Keywords

Navigation